
All A14!, 685 NFR - A COMPUTER PROGRAM FOR IE NUMERICAL EVALUATION 1/ 7
OI RELIABILITY FUN.. UI AERONAUTICAL RESEARCH LAOS
MELROURNE (AUSTRAtIA) G D MALLINSON ET AL. SIP 83

A',',l 11 1D AR /SIRUC-397 /6(1 NI

, IIII111111r
nnnNNnnnl~ ~o

onL,,,l
mom'

mmo

oni/iiniNiNonllll

11110 slim

lw

I (r-+ V /T,)

ARL-9,RUC-RE"pORT-397 AR-002-984. .

GooI

I (o DEPARTMENT OF DEFENCE

C) ,- DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

AERONAUTICAL RESEARCH LABORATORIES
meOUmE, VwToR

STRUCTURES REPORT 397

NERF - A COMPUTER PROGRAM FOR THE NUMERICAL EVALUATION
OF RELIABILITYfUNCTIONS - RELIABILITY MODELLING,

NUMERICAL METHODS AND PROGRAM DOCUMENTATION

by

I G.D. MAMLINSOW AND A.D. GRAHAM

Im Um r AT" MTK II

1 lol=& eleAum s ELCTm.f
a4pproved for PulcRees

esOF A WN 1963

840 10 019

-i AR-00 2- 9 8 4

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

AERONAUTICAL RESEARCH LABORATORIES

STRUCTURES REPORT 397

I NERF - A COMPUTER PROGRAM FOR THE NUMERICAL EVALUATION
OF__ELIABILITYfUNCTIONS - RELIABILITY MODELLING,

NUMERICAL METHODS AND PROGRAM DOCUMENTATION

I by
fG.D. NALLINSON and A.D. GRAHAM

FSU atyiRY

1 The computer program NERF (Numerical Evaluation of Reliability
Functions) has boon designed to evaluate the reliability functions that
result from the application of reliability analysis to the fatigue of
aircraft structures, in particular, those reliability functions derived
if Payne and his co-workers at the Aeronautical Research Laboratories.
The NER? program, although based on the Payne reliability models is
capable of extension to more complex models as the need arises.

This docuent details the mathematical development of the
reliability functions evaluated by Mil? and describes the computer program
in sufficient detail to allow desired modifications.

CONOMWALTH OF AUSTRALIA 1983

POSTAL ADDRESS: Director, Aeronautical Research Laboratories,
P.O. Box 4331, Melbourne, Victoria, 3001, Australia.

-. . . . m .,., l ll II

I
I

I
I

J PRACE

The computer programs described were developed and listed

at ARL. The documentation was completed by Dr. Mallinson after

he transferred to Auckland University. This work was funded by

ARL.

Accession For

NTIS GRA&I
DTIC TAB
Unannounced 0
Justification

YK-N
Distribution/

Availability Codes

Avail and/or
Dist special

.1.1

i-

'1

TABLE OF CONTENTS

11. INTRODUCTION

1.1. Report Outline 3

2. RELIABILITY MODELLING 5

2.1. Basic Reliability Functions 7
2. 1.1. Definitions 7
2. 1.2. Relationships between the basic

reliability functions 10
2.2. Derivation of the Most General Functions

Evaluated by NERF 11
2.2.1. Definition of random variables 13
2.2.2. Time zones and physical processes 14
2.2.-3. Model equations 17

2.2.4. Transformed random variables 21
2.2.5. Expressions for Ps(t) 26

2.2.6. The effects of inspections 28
2.2.7. The derivation of risk rates 36

2.2.8. The density function for strength 45

2.2.9. The failure density for strength 47

2.2. 10. The probability of failure 51

2.2.11. The probability of detection at
an inspection 55

3. DETAILED SPECIFICATIONS FOR THE MODELS EVALUATED

BY 59

3.1. Model Classification System 61
3.2. Input Data Specifications 67

3.2.1. Crack growth function 68
3.2.2. Strength decay function 74
3.2.3. Probability of Load Exceedence 80
3.2.4. Inspection removal and crack detection

functions 84[3.2.5. Density functions for the basic
random variables 88

3.2.6. Model parameters 91

3.2.7. Fatigue life limiting 95

iit

3.3. Data Limits and Their Effects 97

3.3.1. Default limits 100

3.3.2. Notation for limit functions 101

3.3.3. Conditions for the existence of an
integration along the line R%49() 104

3.3.4. Conditions for the existence of
integrations along the linef 108

3.4. Specification for the Most General Model 109

3.4.1. Specifications f6r the reliability
functions as integrations over
initial crack length 111

3.4.2. Specification for the integrand
functions for the most general
model 115

3.5. Derivations and Specifications for Simpler
Models 118

3.5.1. Constant relative strength 119

3.5.2. Constant relative fatigue life 123

3.5.3. Constant relative strength and
relative fatigue life 130

3.6. The Construction of a Time Sequence 133
3.6. 1. Auxiliary functions 135

3.6.2. Inspection procedures 138

3.6.3. Simplifying options 114

4. NUMERICAL METHODS 146

4.1. Numerical Integration 148

4.1.1. Mathematical basis (single
integration) 150

4.1.2. Implementation (single integration) 157 (
FUNCTION ADAPT2 168
SUBROUTINE ADASET 177

SUBROUTINE ERROUT 179

4. 1.3. Multiple integration - error
considerations 183

4.1.4. Implementation (multiple
integration 191
FUNCTION ADAPTO 195
FUNCTION ADAPTO 198

SUBROUTINE INFINT 199

SUBROUTINE Ii4FLE1 201
SUBROUTINC INFLE2 202

SUBROUTINE INFST 203
SUBROUTINE INISUP 204+

4... Performance 205

4.2. Interpolation 211

4.2. 1. Matheatical basis 212
4.2.2. Implementation 216
4.2.3. Inverse interpolation 218

FUNCTION FINTR 219
FUNCTION 3RIV 222

4.3. Solution of Equations 223

4.3.1. The secant method 224
4.3.2. Implementation 226

FUNCTION FSOLVE 227

FUNCTION FSOLV2 227

4.4. Miscelaneous Support Functions 228
4.4. 1. Function range limiting 228

SUBROUTINE RANGE 229
4.4.2. Index location 231

FUNCTION INDHI 232
FUNCTION INDLOW 233

4.4.3. Merging 234

SUBROUTINE MERGE 233

5. DESCRIPTION OF THE NERF COMPUTER CODE 237

5. 1. General Coding Philosophies and Methods 237
5.2. Principal Phases of Operation and Program

Ouatpu t 240

PROGRAM NERP 241
5.2. 1. Data input and initialition of

computational algorithms 243
SUBROUTINE CFIN 246
SUBROUTINE RFSET 251

SUBROUTINE SETTAB 253
5.2.2. Development of a time sequence

including inspections 261

t

SUBROUTINE ADVNCE 262

FUNCTION RSKTOT 274

FUNCTION RSKLOG 279

5.2.3. Calculation of strength distributions 280

SUBROUTINE FLPROB 281
5.2.4. Termination 285

SUBROUTINE CFNEW 286

SUBROUTINE CFOUT 287

5.2.5. Program output 288

SUBROUTINE HEAD 295

SUBROUTINE OUTPUT 296

5.2.6. Graphics operations 297

5.3. The Evaluation of Input Functions 304

5.3.1. Crack growth function 306

FUNCTION CRKDEV 307

FUNCTION CRKGR 308

FUNCTION CRKINV 310

503.2. Strength decay function 311

FUNCTION PSI 312
FUNCTION PSIDEV 316

FUNCTION PSINV 317

FUNCTION PSISET 318

FUNCTION STRFN 319

5.3.3. Risk rates 320

FUNCTION RLOAD 321

FUNCTION RLOSET 322

5.3.4. Inspection removal and crack detectionfunctions 323

FUNCTION SINSP 325

5.3-5. Density functions 327

FUNCTION LPSET 331

FUNCTION BETCNG 332

FUNCTION BETSET 333
FUNCTION PALPHA 334
FUNCTION PEETA 335
FUNCTION PDF 336

FUNCTION PDFSET 338

4. -

j FUNCTION PRNO 341
FUNCTION RNONRM 342
FUNCTION RNOSET 343

5.4. The Evaluation of the Loss Factor 344
FUNCTION GVAL 349

5.4. 1. Structure of the interpolation table 350

FUNCTION ALPTAB 356

I FUNCTION INITAB. 358
FUNCTION RKTAB 360

5.4.2. Initialisation 362

SUBROUTINE NODES 364
FUNCTION RINTV 366

(i FUNCTION RLGAM 367

5.4.3. Interpolation 368

FUNCTION GALP 376

FUNCTION GSTAR 378
5.4.4. Special considerations when including

virgin risk 382

SUBROUTINE GAWST 383

5.5. The Evaluation of PF(t), Pdt (t), ra(t)
ad rr(t) - 384

* 5.5. 1 Overview 384
5.5.2. Probability of failure PF(t) 391
5.5.3. Risk of static fracture by fatigue 396
5.5.4. Probability of detection Pdet(t) 399
5.5.5. Virgin risk and adjustment of PI(t) 404

FUNCTION FALP 410
FUNCTION FBFT 413
FUNCTION FDT 418

FUNCTION FPDET 420
FUNCTION FRLTO 421
FUNCTION FRVO 424

5.6. Limits and Their Evaluation 425

5.6.1. Default limits 426

5.6.2. Limits for a0 or n0 430[SUBROUTINE ALPHAP 434

FUNCTION FNOR 436
FUNCTION FRP 437

-1_
_i-I- - --

5.6.3. Limits for 438

SUBROUTINE BETALM 440

5.6.4. Limits for o 442

5.7. Risk of fatigue life exhaustion 444

FUNCTION FRFO 449

FUNCTION FRF1 452

FUNCTION FRF2 453

5.8. Strength Distributions 454

5.8.1. Probability density for strength 455

FUNCTION FDSR1 460

FUNCTION FLDRO 461

5.8.2. Failure density for strength 464

FUNCTION FLDFO 470

5.9. Basic Communications, Output Procedures and 471

Mathematical Functions 471

5.9.1. Communications 471

SUBROUTINE ECHO 475

FUNCTION INTEST 476

SUBROUTINE INTGIN 477

SUBROUTINE PROMPT 478
SUBROUTINE REALIN 480
SUBROUTINE TXTIN 483

5.9.2. Two-dimensional data array output 484

SUBROUTINE IRROUT 485

SUBROUTINE ARROUT 486

5.9.3. Function file input 487

SUBROUTINE READFN 488

5.9.4. Run time monitoring and program

termination 491

SUBROUTINE EXTIME 492

SUBROUTINE FINISH 493

5.9.5. Mathematical functions 494

FUNCTION ALOGI 495

FUNCTION EXP1 496

5.10. Graphics Support 497

5.10.1. Outer integrand plots 499

SUBROUTINE PLTOUT 500

SUBROUTINE PLTSET 503

SUBROUTI NE PLTSTR 504

iI
5.10.2. Integrand - function evaluation maps 505

SUBROUTINE INTPLT 512

SUBROUTINE PLTPNT 515

5.10.3. Loss factor maps 517

SUBROUTINE ARRPLT 520

SUBROUTINE RLINE 522

SUBROUTINE GRID 523

SUBROUTINE CONT 524

SUBROUTINE DIAG 526

SUBROUTINE P 527
SUBROUTINE SETPLT 529

5.10.4. Graphics support subroutines 531

SUBROUTINE FSIZE 533

SUBROUTINE PLOTD 535

SUBROUTINE SETGRF 536

SUBROUTINE SCLFCT 541

SUBROUTINE SMOOTH 542
5.10.5. The graphics post processor NERPLT 545

PROGRAM NERPLT 549

SUBROUTINE COMPRS 551

SUBROUTINE FPLOTS 552

SUBROUTINE FPOINT 554

FUNCTION FUNC 555

SUBROUTINE PLTS 556
SUBROUTINE WINDOW 557

5. 11. The Data Preparation Program, NERPRE 559

PROGRAM NERPRE 563
SUBROUTINE SELECT 564

5.11.1. Preparation and editing of the control

file 565
SUBROUTINE CHANGE 567

SUBROUTINE CHECK 569

SUBROUTINE PDFCNG 570

SUBROUTINE PDFOUT 571
SUBROUTINE VALOUT 572I

I

5.11.2. Preparation of function files 573
SUBROUTINE DATIN 574

SUBROUTINE FCNFIL 575

REFERENCES 577

NOTATION 579

A. I. Cross Reference Listing for Subroutines and
Functions 590

A.2. Definitions for Variables in COMON 595

A.3. Alphabetical Listing of Prompts and Error
Messages 60+

A.4. Program Assembly 608

DISTRIBUTION

DOCUMENT CONTROL DATA

II

1. INTRODUCTION

The application of reliability analysis to the fatigue

of aircraft structures leads to multiple integral expressions

for various statistical functions referred to here by the

generic term, 'reliability functions'. These functions depend

on modelling assumptions regarding the fatigue process and

the way that statistical variations or 'randomness' can

be accounted for. The pwticular assumptions and analysis

leading to a given set of reliability functions is called

a reliability model.

The computer program NERF (Numerical Evaluation of

Reliability Functions) has been designed to evaluate the sets

of reliability functions for a wide range of models and types

of input data. It is the end product of several years of

development of numerical techniques and computer codes for

the evaluation of reliability functions, in particular those

derived by Payne and his co-workers at the Aeronautical

Research Laboratories (ARL). Recent theoretical analysis

by Mallinson has established a geoeral technique for the

construction of reliability functions from given model assumptions

and the relationships between the Payne et al models and other

L models developed at ARL by Ford and Hooke . The NEEF

program, although based on the Payne models now follows

S
the general analysis of Mallinson and is capable of extension

to more complex models as the need arises.1!

Generally, the detailed reliability functions are complicated

and their numerical evaluation requires careful construction

of efficient algorithms and subsequent computer code. NERF

has been designed to mLnimise the involvement with this

detail required by a user to apply the analysis to a particular

set of fatigue data. The program is, in fact, supported by

an interactive data preparation program which ensures that

a user does not even have to have an extensive knowledge of

computer operation. Provision of graphics facilities by NERF

and an interactive post-processor further enhance the

ease with which the reliability modelling can be applied and

the results interpreted.

NERF and these support programs form a complete facility

for the application of reliability analysis to the fatigue

of aircraft.

The complete documentation for the HER? computer

program consists of three reports. The general theoretical 9
basis for the reliability modelling is described by Mallinson .

At the other extreme, Mallinson and Grahami8 detail in a user

manual the operation of NERF for the user whose prime interest

is the application of the analysis to a particular set of

data. This -document fills the space in between the other

two by detailing the mathematical development of the reliability

functions evaluated by NERF and describing the computer program

with sufficient detail that a scientist, or computer programmer

can understand 'hat the program is doing' or make modifications,

(probably respectively). !I

I

1.1 Report Outline

The document consists of two main sections. The first,

comprising Chapters 2 and 3 describes the mathematical development

of the reliability functions and provides a numerical

specification for the NERF program. The remaining Chapters

document the numerical methods and computer programming.

ConceivIbly, (particularly considering the sise of the document)

these two sections could have written as separate reports.

However, it was considered that the heavy dependence of the

computer program description on the mathematical section

made the single document a preferable alternative.

The organisation of the theoretical section is straightforward.

The development of the most general model evaluated by NER 5

is presented in Chapter 2 and follows the analysis of Mallinson ..

Chapter 3 expands the analysis of Chapter 2 to include les

complex models and the various optional facilities provided

by the computer program.

The organisation of the program description is not

so straightforward. MF is a large JVRTAK computer program

and consists of over 100 subroutines or function routines.

Many of these perform operations or apply numerical analysis

techniques which are not particularly related to reliability

modelling and can, in fact, be used by other computer programs.

The numerical methods for integration, interpolation and

the solution of equations are provided by one such group of

the~- o'tio.o

tb

subroutines and functions and are described in Chapter 4 prior to the

bulk of the program description. This Chapter is

organised in the same manner as the remainder of the document

in that the description of particular subroutines and functions

are included in the Sections and sub-Sections in which the

operations they perform are described. An alternative organisation

whereby all the subroutines and functions are described in an

Appendix to the main report was rojeclant although particular

descriptions could be more readily located in such an organisation,

most descriptions would be separated from the the discussion

of their operation by considerable volume of text, making reference

between the two difficult. A cross reference index is given in an
appendix.

Chapter 5 contains the bulk of the computer program

description and is organised in a 'top down' manner, from the

most general code to the most particular. Section 5.2 describes

the overall control code which selects the various operations

required to evaluate the functions requested by the user. Sections

5.3 to 5.8 detail the code which evaluates the reliability

functions, relying of course on the the numerical methods

presented in Chapter 4. Section. 5.9 details the

basic input, output and terminal communications code and

5. 10 describes the subroutinm which provide graphics support.

The appendices contain various detailed sets of programming

information such as the definitions of variables in COMMON storage, fl
a cross reference guide to prompts and error messages and

program assembly. [I

p i

2. RELIABILITY MODELLING

There are several phenomena (e.g. fatigue, corrosion)

which progressively degrade the ability of a structure or

component to survive the effects of its environment. Ultimately

this degradation process remults in the complete failure of

the structure at a time which is a function of the environmental

and degradation histories. For a given structure, the time

of failure will be unique. Unfortunately, the uncertainties

in both the environmental history and its effect on the

degradation processes make a prior deterministic calculation of

the time of failure impossible.

Certain classes of structures, such an aircraft and automobiles,

are manufactured in such a way that for a given environment, the

degradation processes are similar between members of each class.

It is then possible to apply statistical methods to estimate the

time of failure based on a knowledge of the mean behaviour of the

class, deduced from experiments or from -service failures. Similar

statistical methods can be used to account for variations in the

environment and/or the effect that the environment has on the

degradation process.

A reliability model is one such statistical method. The

models evaluated by NERF have all been generated by assuming

that the mean relationships between strength degradation,

crack length and time are known. That between crack length and

time is dependent on a time scale which is determined by

the envorinmental history. For fatigue, this history consists

of an applied load sequence and the time scale is determined

by the mean load application rate. Variations in structural

behaviour are accommodated by introducing random variables

as parameters in the strength - crack length - time relationship.

There are several ways in which the random variables

can be introduced, leading to several reliability models. For

a given application the most appropriate model will be that

for which the assumptions behind the introduction of the random

variables beat suit that application. The availability of adequate

data defining the required probability density functions will

also influence the choice of model.

The models evaluated by the IIERF computer program are

similar to those derived by Payne IL at - and can be derived

using the method described by Mallinson *This Chapter describes

the application of that method to derive the most general model

evaluated by the program. This lays the basis for the detailed

model description and specification which follow in Chapter 3.

2. 1. Basic Reliability Functions

2. 1.1. Definitions

The objective of a reliability model is to evaluate

'reliability functions' whiA represent the aggregate behaviour

of a population of structures which fall within the scope of

a given statistical representation. Thse" functions are

defined briefly below. More complete definitions are given

by Mallinson -.

The definitions for these functions are relevant to

a population with an infinite number of structures. It is

an assumption of the analysis that the number of structures

in a population is sufficiently large for the uae of continuous] Jfunctions to be meaningful.

(i) Risk rate r(t)

r(t) risk rate %Fraction of remaining population (2.1)
failing/(unit t me), at time t.

In many cases it is convenient to regard the total risk

rate as being the sum of several component risks. For

the models evaluated by INRF, three omaponents are identified.

{r(t) z r,¢t) +rf (t) +.r,(t) ¢2.2)

where r (t), rf(t) and rv(t) are the risk of static failure

by fatigue, the risk of fatigue and the virgin

risk respectively,.

Definitions for the component risks are given in

section 2.3.

(ii) Probabillty f failure .t

Let the random variable F denote the time of failure

of a structure in the population, At time t, the probability

of failure is the probability that F is less than t. For

a large population,

P,(t) - Fraction of original population that (2.3)
S has failed before tins t t

(111) Probability of survival P,

At time t, the probability of suvival is the probabilityI1
that F is geater than t. For a large population,

P (t) - Fraction of the original population remaining
- at timet. (2.4)

Obviously,

PS(t) p-P(t) 1. (2.3)

(iv) Probability density of the tme to failure p.,t

The fraction of the population with tines of failure

in the interval (tt * dt) Is given by p(t)dt whero

p(t) is the probability density function for the time to

failure. i

I

Sq a
i *

(v) Density function for *treni&t q(I g> t)

At a gLven time, it can be of considerable interest

to know the distribution of strength abong the suriving

structures. Using R to denote strength, this distribution

fIn Siven by the conditional density for 4 givn

survival to time t, i.e. pf(R >t).

(vii) Fqare donglty for strenath n(R It)

The conditLonal density for R given failure at time t

is called the failure density for strength.

I

I 10

2. 1.2, Relations sD between the baic reliability function.

From the definitions of the baxic reliability functions, the

following relationships can be dorived (Hallinson).

PF(t) *P _.dP (2.6)

- *t- dt

.(t) OF.f€ ((t)) (2.1)

T If PF(t)-- f(R)dR, then

p2R~t) -f(R)/PF(t) . (2.11)

if Pr(t) % r- (R)dR, then

P (R!)t) g (R)/P (t). (.2

If

1'

-4 -

j II

I

j 2.2. Derivation of the Most General Functions Evaluated by NEEP

The derivation of a reliability model for fatigue

relies on the existence of a functional relationship between

strength, crack length and time. Parameters in this relationship

can account for variations in behaviour between structures in

the population* and become the random variables of the reliability

model. QLven probability density functions for these random

variables and a relationship between strength and risk rate,

the reliability model can predict the aggregate behaviour of the

population in terms of the basLc functions defined in the

previous section.

The models evaluated by 1ERF can be derived using the

method described by allinson " which is summarised by the following

steps.

(i) Random variables representing parameters in the fatigue

process are defined.

(ii) Mat nct phases in the fatig.process are identified and

each phase associated with an appropriately defined time

son@*

I (iii) For each time zone, a relationship between rLmk rate

and the random variables is establised via the strength
I I crack lengtch - time equation.

itI

(1v) Transforued random variables are defined and the

equations established to this stage recast in

torus of those va-ables.

(v) An integral expression for P 8 (t) ins obtained by

intorating an expression for the probability

of survival for structures ith a give.n ot of values

of the random varable over th: whole space encompassed
by thoe variable (Mall:nson S,

(vi.) The expressiLon for P I(t) in modified to iLnclude the

. effects of inspections*

(vAi) Having generated an expression for P (t). the remaining

reliability functions can be obtained using the

relations (2.6 - 2.12).

The derivation presented below can be regarded as a

particularizsation of the more general treatment described by

Mallinson for the models evaluated by M .

.. c i

2.2.1. Defintion Of random variable.

Th. models depend at most on three random variables.

() 1,: ComaoratIve fatiue Le

Let tf be the fatigue life of a given structure.

Thea

xI t/t (2.13)

defines X as the comparative fatigue life, where

tf is the median fatigue life of the population.

(ii) 5: 4Initial craa length

At the commencement Of time, (t =)v structures may be

cracked. The length of such a crack for a given structure

in denoted by .

(.Iii) X3 " Relative residual strnzth

As a structure ages, its strength decreases as the

result of increasing crack length. The ratio of the

strength of a Siven structure at a given age to that of

the median structure of the same age is called the

relative residual strength1

It is assumed that suitable densty functions can be determined

for these random variables.
C 'I l~ldta

2.2.2. Tie ones and uhy!Mcal processes

Three phases and corresponding time zones are identified.

For a given structure the times for transition between zones

depend in general on the values of the random variables.

W(i) : Uncracd

Generally, structures commence life uncracked and therefore

unveakened. However, this time zone does not exist for

a structure which starts lite with a pr-oxisting crack.

aa(i)D:Cracksd

Following crack initiation the structure weakens as a result

of fatigue crack growth. This phase of the fatigue process

exists from the initiation time, tip (or 0 for the

initially cracked structure) until such time when it

is impossible for the structure to sustain even the

static loads imposed by its environment, During this

time zone the strength reduces from the initial, or

virgLn strength of the uncracked phase.

During the first two time zones, structures fail when

an applied load exceeds the current strength. Mach failzes cam

be expressed as a risk rate as defined below. There are heseer

certain conditions which are known to lead to structural

failure regardless of the applied dynamic loads. These

conditions define a third time zone which ia given the

name 'failed'. It ia important to note that any structure

that enters D La deemed to have failed but D does not3 3
contain all failed structures. The imposition of an upper

lim t for Dzis referred to here aa fatigue life limiting.

The time of transition from D. to D 3 , denoted here by

tf ta a function of the random variables. For a set

of structures having the same combination of values of

the random variables, this time Is the fatigue life

of the set as used in equation (2.13); if a structure

fails before tf as the result of an applied load exceeding

the current strength, the time of failure for that structure

will not equal the fatigue life for the set. This subtle

difference between time of failure and fatigue life must

be remembered when establishing density functions for

The models evaluated by WEF can be divided into two

groups. The first group assume that all structures commence

life cracked, and are called initial crack models to distiguish

them from models in the second group in which all structures

ence .ife uncracked. NEU does not model a population

" I in which only some of the structures are initially cracked.

"1
__ _ __ _ _

For models in the first group, the time zone D1 does not

exist. For models in the second roup, a structure is In D1 if,

t< ti (2.14)

where t ia, In general, a function of the random variable.

Structures belong to D2 if

t 1 4st < tf (2.15)

and D3 If
t> tf (2.16)

For models in the first group, structures belong to D2 if

o t 4tf (2.17)

and (2.16) defines D.

*1

I

2.2.3. Model epuations

To generate the reliability model# an expression for the

risk rate for each time zone in terms of the random variables

must be derived. For fatigue, the rink rate Is assumed to be the

two major effects.

(i) Damage assumption

Each load application produces an increment of damage.

If the structure is uncracked the damage produces an

inevitable approach to crack initiation. Followng

initiation, the damage produces an increment in crack length

and a subsequent reduction in strength.

(i) Contibution to ris

Each load application has the potential for producing

struatural failure if the load exceeds the current strength

of the structure.

The damage assumption, and the fact that, in terms of

the fatigue life of the structure, the applied loads occur with

sufficient frequency that variations in their timing may be

ignored, permits a direct link between time and load applications

to be made via an average load application rate Ir. In fact the

link between time and load applications was emphasised by Payne

gJ A& by the use of the letter N to denote time.

Let R denote the current strength of a structure and L

denote load magnitude. From a givn load sequence it Is possible

to regard L as a random variable and derive a stationary probabIlity

density pL(L) for the applied load. The probability distribution

of applied loads is,
L

PL(L) JpL(L) dL. (2.18)

Because this distribution is stationary, the probability that

an applied load exceeds the current strengtiR,of a structure is,

P(L> R) -a - PL() (2. 9)

The instantaneous risk rate is given by,

rk(t)L(R).r . (2.20)

stage, equation (2.20) is relevant for any time zone.)

The damage assumption is included by postulating that the

strength of the structure is a function of crack length which is,

in turn, a continuous function of the number of load applications.

Using a to denote crack length,

-Ia(a(j)) (2'.21)

which functions are known at least in the mean and have the

general form shown in figure 2, 1. Functions for particular

structures are obtained by introducing parameters into equation

(2.21). These parameters become the random variables of the

model.

ii

tC

I

MedafTim-

Figurez' 2. 1. General. forms~ for. the od:ian strengthand cack length fta€tioI,
aLc.tI1

FIUO2..Gnra om frt.meinsregh-
an!rc eghfntos

For an uncracked structure in
DI the strength is gvn by,

R
(. .2)

where R is the medan virgn strength for the population,

For a cracked structure in
D 2 the strength is

R -. xj(&(t/x I+ a7' (x-))) (2.23)

or

i where -r(i) is the median relative strength decay function,

The rlk rate for a structure in D 1, is,

r 1(x,) 0 P.(40o)"r (2.26)

and for one in DZ

rl(=_, t) PL(x3R-(t/Xl 4- to)). (2.,)

At

I
J 2.2.4 . Tranaformed random variable.

f The random variables defined in section 2.2. 1. are those in

terus of which the reliability models evaluated by NIR? were

initially defined by Payne _ jj . Some advantages cAR

be obtained, particularly with respect to the numerical procedures

If the models are cast in terms of a new set of transformed random

variables. As diacussed by Nallinson, the use of transformed

random variables facilitates comparison with other reliability

models such as those of Ford

The internal operation of B? is based on the use of

the transformed variables. However Input data and computed results

are expressed In terms of the origlnal set of variables. It

is envisaged that the user of KM will have little requirement

for details of the expreosons evaluated by the computer program

and the equations presented here are directed to a reader
with a requirement to understand exactly how the progrm works.

The reliability functions and the ensuing proram specification

and description are expressed in terns of the transforued set

of random variables.

The notation used here differs from that used by Mallinson

and the conventions used for random variables in the previous

sections of this report, This different notation was used during

the development of the computer prosper and it was considered

I more efficient to retain it In the documentation rather than

change the symbolic ames througout the computer code.

The three random variables in the transformed net are

defined below.

Significant reductions in the complexity of the reliability

functions can be obtained if the argment of f is used

as a random variable. This argument is a eaxare of the

age of a structure and is related to the orIg.nal

random variables by,

s t/Z1 .~ a 1 () (2.28)

Age is, in fact, equivalent to median time, t.

(i) : Virgin strenath

From (2.22), the vrgin strength of any structure, se say,

in,

St ,(2.29)

(.i.i) a: Initial crack length

a0 is, in fact equivalent to X Zn some instances it

may be more convenient to use no , which from (2.28) Is

the irtialWa Ioe.,

z 0 3 a(%o) (2.30)

, [t
1l

Using P.(Kc), P %(s) and p3o(n o) to denote the density

functions for eL , % and no respectiwly,

p %(ao) a p (s) (2.32)

and pn(n) -AP((n()) on (2.33)

The density for fJ in conditional on the vaue for so or

a ,-tornat lg o. Vx- pm,e(tf> to denote th, =on.tioa

densty (rather than q (f1 o) or p,(f [no),

In terms of the transformed variables, the risk rate equations

are,

r1z rl(a- I OL)r (2,35)

and
ur2 (ms-,Q.) R P; ('L))l • (2.36)

TW time zones can now be defined as subepaces of the

transformed random variable s"aoe. Adding to the fatigue life

limiting condition the requirement that surviving structures

must have strength greaer than some minimum value, Rain says

an unaacked structure in D1 has,

, 0< R,, ,, . (2.37)

Note that the D1 subepate exists only when n0 i f

corresponding to ao :O.

For a cracked structure,

ti -n <tf n (< f~ mAYP)c0 (2.38)

Note that the order in which the limits are specified (and

hence the order in which the multiple integrations are nested)

differs from that used in the theoretical discussion of the

genesis of reliability models presented by Mallinson . The

computer program always integrates the strength parameter as

the innermost intepal; the model derivation presented here

follows the order most relevant to the computer program.

The time zones are shown as subspaces of the transformed

random variables o and/ in Fig. 2.2.

fi
H

I

1

P3D

Fl.pe 2.2. Positions of the sabspaoe bonsdaries

in , ,, spaoe for constant or

Initial crack 0odels with n"ti ae

structues il ex.t to the left of

the broken line.

D - Uncracked structures

D2 - Cracked structures

J D3 - Faled structures

2. 2.5. Zpressions- for Pt

Given the expreasions for the risk rates in each time

zone, the probability of survival can be written in the form

(Mallinson r),

P5 (t) Rla(xtt)Px(x)dz -§H(xt)Px(L) d (2.39)

Dz D2

where p,(x) is the Joint density function for the random

variables X and H(x,t) is a lose factor equivalent to the

probability of survival for structures with la x up to time t.

For x & DI

I(xt) a exp[-r,(z)t' (2.40)

and for x6 Da t

I(Zt) a expt-r 1 (z)Et -f (xt')dt' . (2.41)
t1

In terms of the transformed random variables, the

Joint density function for cs4and A. can be written as

A P)o(fO)P . (e) (t.)

using the notation of (2.34). For structures in D1 , with no= O,

BWuC,' 0 9 t)0' a *xi{-r1 (a.)tj (2.43)

and for structures in D2 with noLO,

r 2 df] (2.44)

17

j It no> t in (2.41) can be regarded an being zero, D,

does not exist and in D2 ,

no
!0

Using the limits defined by equations kZ.37-38), the expressions

for P W(t) for a population of initially cradced structures!A

P WP((t- no PO(p (ck.M no(.g td o

i .o.. (2.46)

where H(eL, ,no0 t) is defined by equation (2.45).

For a population with no= 0, Os ' (.59))

P 4.I x r I S)t

~-V ,(~J p(a0~o'.~,n 5t)~d~(2.47)

i f" -

with the lose factor defined by (2.44).

Equations (2 46) and (2.47) define the probability of

survival for the two groups or models evaluated by NEoF. All

other reliability functions can bO derived from these expressionns

using equations (2.6-2. 12).

, ,I

2.2.6. The offects of inspections

An inspection has two effects on the population of

structures.

i) Structures that are detected to be deficient according

to appropriate criteria are removed.

(ii) The structures removed during an inspection may

be replaced.

The first effect modifies the joint density function

for the random variables. Following an inspection at ti says

the probability of survival can be evaluated by replacing

p .(1 in (2.39) by pi*4) where,

px(LO -- pl(:)S(x, tii) (2-48)

and S(x,ti) is a function representLng the removal of structures

during an inspection. The total fraction of the population

removed during the inspection is called here the probability

of detection at ti Pdot(ti) and is given by,

P de(t±3) P(t±3 - 14(ti 3 2. 9

where P-(ti3) and P--(ti) denote the probability of survival

evaluated by equation (2.39) using pj() and pj (1) respectively.

The second effect is more difficult to model. In J
general, the replacement structures camfrom a population

with different statistical properties from the original.

...~~~'

Accordingly, the probability of survival following the

inspection can be written in the form,

P Wt = Pj7'(t) + p'~t-t± 1 : -0

where P 3 -'(t) is the probability of survival for the population existing

prior to the inspection and P (t-ti) represents the probabLlity

of survival for the population of replacement structures. As

the inspections occur, the number of terms in (2.50) increase.

/

Fortunately, useful calculatLons can be made without

involving the full complexity of a general replacment analysis.

REF offers two options. Replacement structures can be assumed to

be repaired in such a way that they are no longer susceptible

to a risk of failure (P.yneZ) or the calculations may proceed

without replacement (Hooke) In either case only one population

need be considered in the analysis.

Returning to the effect of removal during an inspection,

the function S(3 9ti) can, in principle, account for failures

in the inspection procedure. Earlier versions of the NERF

computer program assumed that inspections were perfect and that

S(x, t%) was a step function which had the effect of modifying

the integration limits in the expressions for PS(t) and the

derived reliability functions.

|

J~m lNI- mI~unma u ~m n nmmnw nlomun~mmum UUlm O-.--II N I U m - n

30

Two inspection criteria can be applied by NERF.

(W) Crack length

The function S is assumed to have the form,

S(x,ti1) Si(tij/x1lao)RS(td - n0 - ti /x 1). (2.51)

HS(z) is the unit step function such that H(z)=0 for

z SO and H1(z) =1 for z> 0. The mean 'cut off time', td'

corresponds to a crack length ad beyond which the inspection

is known to be perfect, (td.a-1(ad)). S (xl,t±1) is

a removal function the form of which does not change between

inspections.

Making the substitution, x1 At/(P - no),

S(e, $ no.t, tl J)'HS(((%-no)t/tl j +nO-,d)tij/ Ais (nO+(,&-no)tij/t).

...... (2.52)

For given no, all structures with _no1-(td-no)t/til have

been removed by the inspection at tij. Following a crack

length inspection, the limits of integration for cracked

structures are,

Q S OS td no_.' tf RuLI.f (d<0 2 3

where

tf t mi Itf, nO' (d-nO)t/tij)

and depend on only the last inspection time, ti J The positions

of the D and D2 subspace boundaries for given n0 are shown

in Figure 2.3.

I I
>00

!

* I

Figure 2.3. integration doain boundaries In

= to space for constant no following

a crack length inspection.

Int~gration donain for cracked structures.

Potential for rejection by an inspection

at the current time.

, ! i

The function S (n0 + - no)ti /t) modifies the density

function at each inspection so that, following the r'th

inspection,

P () W 'a no (@ - n)tij/t)J. (2.55)

Throughout the remainder of this document pp(o) will be

assumed to be replaced by p*() following inspections.

(ii) Proof load

All structures are subjected to a proof load of magnitude

R say. All structures with RR p are rejected so that

sC.,A, noIts tij) H s(t/(- no) - tiIl (R/pl) - no).

j (2.56)

The domain limits for cracked structures are,

ti-_ no f no<) n _<f d Z< . (2.57)

where

(2.58)

For uncracked structures, R sets a lower limit for e.p

The positions of the D1 and D. boundaries for constant

are shown in Figure 2.4.

Note that a proof load test, by its nature, results in a

'perfect' inspection. There is no removal function in this

case. I
L1

33

.P

I/ /C
j~, (. ;-"I:

k t

Figmu* 2.4. Integation domain boundaries following
a proof load inspoction,

Integration domain for cracked stuctures.

potential for rejection by an inspection
at the current time.

(iii) Combined

It is possible that both types of test are performed at

an inspection following which the more severe of the expressions

in (2.53) or (2.57,2.58) apply. The expresaon for PS(t)

for initially cracked structures is, (c..4 (.yq.4)

p t)m (tf (V ,Gf) ,nOd-tI no 112

(2.59)

and for a population without initial cacka, (c-'. (L-47))

" p

The subspace boundaries following a combined inspection are

shown in figue 2.5.

I

III >00

ti* n.* tf

Figure 2.3. Iategration domain boundaries followdag
a oombined ora*c length and proof load

Inspection*

/7/ Integratioa domra fo craoed structures.

I \ \\ Potential for rejection by an inapectiona at the current time,

"''
!

2.2.7. The derivation of rink rates

The expressions for the total risk rate can be obtained

from those for the probability of survival via equation (2.8).

The differentiation of expressions Involving time dependent

transformed random variables requires some care and Hallinson 3

derived a general result for the came when a single time

dependent random vwiable was the Innermost variable of

integration. Although this in not the case in equations

(2. =9) and (2.60)o the general result can be applied recursively

to yield the required risk rates. An alternative approach would

be to rearrange the order of Integration so that Was innermost

and apply the general result directly. Both approaches yield

the same expressions for risk rate,

Taking (2.59) as an example, the subsequent derivation is

rendered more compact if the integral expression is written

in the form, tO

Ps mS p no(noT%()du (2.61)

where,, _e

T (no)-J Pf()TnOe(nef)d(O (2.62)

o no

and

.noo 4p., t I

I-T

Differentiation of equation (2.61) with respect to time

yields,

- 3-) P no) L T (no) dno (2.64)

and applying (3.73) obtained by Kallinson ,

no no

(dtf - ! e(not

dt f

Noting that UL: (-)Vt When t Z 4-d(t o -)/tI

=I- 4f (d - u0)/t±3 : dt f & o that the econd term in
at t f it-.

(2.65) is non-zero only when t t; in which oae f,0f ff

and At *(tt no)/t and (Z.63) become,
ftt

(no- -(+Ano F

f t ttf !;.o) Roo (olf,) .(2.66)

.1 •

t '0'tA nL

(n,) e CO sf 't 14104

.38

Applying the differential operator in the first term of (2.66)

to (2.63) produces,

+.T

.L P(at)(L it-

j (2.68)

~It can be readly verified that,

2 r (4 1,, (AH p'iSnost) . (2.68)

SubstitutistS (67),(2.68) and (2.63) into- (2.66)

tt

L T(ao -I AL (no, (,,,t) pjw,) d-4

t f

.... (2.69)

Of *A 4 an1 f ~tn i o i3/) (2.70)
wl~e~m4

i i

The second term in (2.69) is non-zero only when o'--R.

corresponding to those values for which, .1
R R/y'(no i(I n o)ti/t)" (2.71) 4

i the 5 value at which the equality in (2.71)

occurs, it follows from the fact that Rp> 2l that p > no ,

Moreover, the relationship (2.71) holds only for(pPl . The

(Ilower limit of integration for the second term in (2.69) can be

replaced by 0 pRain ; forH, i02minlf() so that

and the term can be transformed to an integration over at , A. ZO

P,R~ .c'

, - I1. •
m in T pRn

where

mi (2.73)

Note that the term exists only when

) f)' (2.74)

Using ~4,(-n,)/t and noting that a: in (2.72) in now a duxW

variable of integration, the second term in (2.69) can be replaced

by
m f(t)

JR ,/r(Pp ,,
an

1

/10

Substitution into (2.61.) and applying (2.9) yields,

r(t)P(t) P t)

tdf

S%

• P.0(Aot,)))Po (.Lg f-n (qn).(afnt) d dn 0

ti no.5
td

d f

.... (2.7?5)firt toa in (2.) acouxta for the faLlur-es resulting from

strengths of the structures in the population and is the

contribution referred to here as the risk of static failure
by fatigue, r(t). he second term accounts for falures

resulting from the strength being reduced to Ri n and the third

term represents structures that have reached their fatigue

life limit. Both terms combine to yield the risc of fatigue

life exhaustion, rf(t),

Ii

/l

The expression (2.75) is incomplete in that generally

the integrands in the last two terms are zero for some values

of n0 . To derive explicit integration limits it is necessary

to consider the limiting processes implied by the inspection

procedures. The general situation for given no and time

t greater than ti is shown in figure 2.6. The second term in (2.75)

being an integration along the line Rwi,=:*(Y)Awill exist only

pif < if This condition is met ifs

]EmiL/(rat*)> Rp/#(no (!t - n0)tL/t) . (2.76)

(The left hand aide of (2.76) is theovalue of the intersection

of the minimum struinh boundary with f-tf: the right hand aide

is the d value of the intersection of the proof load boundary

with (-tf.)

For t:no+.(!d - no)t/tij , equation (2.76) can be

reduced in the following manner.

t >f-in, (',)/Rp) , (assumia ia monotonic
and decreasing))

z n,< (dt - 7(]Rminft)/R) ti/(t-.ti)* (2.77)

For tf;;atfe ss'n1(t 0 t 3 t

(2.76) ,* mI uy(tf p > p no).tti /) /t:A) (.

no 0 < (t.fi'(llpf -t f)/Rain)l-! f i /(-ti). (2>.78).,

a} 3-i tJrw

Fu.2.6. Schematic representation of the orig as
of the socoad and third torus in equation

(2.7I).

4*3

Both conditions can be combined to -ield,

n04 (mln d-f' "%E'p Pf".i t

-minit fr (Rminr(Ed /R) t' 4)/(t t'

4. a(R i) j•(2.79)
fno R mn)S

The third term in (2.75) is an integration along the

line q and exiats only when tf tr. This condition

in equivalent to,

-4nO< (tdt -)/ .)

f no .80)

Equationas (2.79) and (Z.80)define the upper limits

for the n0 integration in the second and third (or rf) terms

in equation (2.75).

In a similar manner to that described above for

(2.59), equation (2.60) can be differentiated to derive

the risk rate for a population without initial crak.

The result of this differentiation is,

z(t)P (t) R,@Lr(c p[-GOtckP

p

t
aO

+ 9(tft po(tf p (,)(tf *no, t)o. .(2.71)

The last three terms of (2.61) are obvious sipliftcations

of (2.75) with no=0. The first torm accounts for the

failure of uncracked structures in D1 and contributes to

the virgin risk*

,i.1

. , '

2.2.8. The density functlon for strength

Lven an expression for the probability of survival,

the density function for strength can be obtained using equation

(2.12). Using the relationship,

R - (2.82)

the integration over a in (24.9) can be transformed to one

over R9 so that$

C' t

ps(t) . Pno0(nO) PO(f) i (Wr(S))(R/(), Psno, t) dRdfdno#

..... (2.83)

where

where R" is th Zvl o wih

a .Nr, (PM/(%+ (P -0)t i/t . 2.84)

Rearranging8 the order of iLntegratilon yields,

PsWZ= P no(n o) pFf() p,(R/,r(f))R(R/y(P), ,%,tt)dfdnOdR
" Rain t, n ' Plitt%) *o.... (2o84&)

wh ere 5P , Pti 11B he Fg value for which,

and f (R) in defined by (2.79), with RsiL replaced by R.

I

Using (2. 12),

Pa(RI > t)

(2.86)

Starting with (2.60), the probability of survival for

a population without initial cracigs can be written in the form,

Pffpj2(R)(/~fq, gt! >) d$+

Rmin maz tj~v p~ j(2.87)

and he dn~d~y fnctin fo stengt becm[s

PR(R > t =[,(R-,)P(R)exp-r ,(R)t)PPaH

2.2.9. The failure density for etrenAM

Given an expression for pF(t), the failure density for

strength can be obtained using equation (2. It. Starting

with (2.75), theoaintegration can be transformed where possible

to an R integation,

PjF(t)- P (n ° "

ji. n no fN

(¢H(R/¢) ,Pu o , t) dRd odno
f . o(,,n)i

* P3 (nopt) no~ p sotp()f

+ I pt fRf(n

6 ... (2. 89)

where

lt;(no)= *s4BainsRpr(tf)/rft(t+(f - no)tl 3 /t?5 (2.90)

The second tem cannot be transformed since each ianer integration

is along the line R z Rain *

21 I

/+8

Rearang~tng the order of integration .elds
-9

f n(R) t f

PJ rJ(R) ¢() P (p)Pop(R/))H(R/f(no) t)dfdn0 dR" m ±. J1 o09 nop,a (@

0 2 no±/rX- t

as fd (R)

ti. t o ¢ "o

.... (2.91)

where

(R) -(f 1 0tRr(5f)/9)t ti ft.)/(t-tiJ) (2.92)

(Note that f, d(R) in equivalent to f an defined by (2.80)

but with Td replaced byfr(Rpt(t)/R).)

Using (2. ii)t the fallure density for strength is,

t (B) rf
PR (RBt). r2() (

n "() f1

+ 5in n a)po(f *)K(mLmqfmn0 mt)dfn
ti fd RmaM O d

f no (R
-RR(i)P(f P -n~ t t

1

Note that the second term In (2.93) represents a concentrated

density for failures with R -Rman. 2he third ter exists

-j only when R>If(ti), :Lo.,

I !tf(t 1P til/t (2.94)

For a population wli:+hout initial cracks the '.L integrations

in (2.8t1) can be transformed and the order of inte ration rearranged

so that,

PF(t)= Pjp(R)r,(R)ezPtrI(R)tjdR.P,(ti) -

p

+ r 2(t) . (P) P. (R/ ,(R),(v , t) d.dR

-sn f

PU t~ f . (/ ' t))I[(R/y'(t 909t)d A (2.95)

where It (0) in given by (2.90) with nei0,i.e.p

IR;(0) S a~~.~t(~/(~~'A(2.96)

a,-

It follows that

t +

=Pt). t

I *0** (2.9f

p H&,JLO

5-I

2.2.10. The probability of failure

Equation (2.5) provides a trivial means of computing

Pr(t) 0 iven a value for Ps(t) and there appears to be no need

to derive an integral expression for the probabiLity of failure.

However, the numerical evaluation of expressions such

an (2.59) and (2.60) Is difficult when P(t) ; 1. To

obtain meaningful estimates of P (t) near unity the numerical

integration must be computed to an accuracy of several significant

digits. A better approach in such cases in to evaluate the

integral expression for P 7(t) and use (2.5) to obtain PA(t).

In the practical application of reliability analysis to

fatigue, it in normal to concentrate interest on situations

where the ri*c rates are very =all and P (t)L- 1. Thus, althoug

the integral expression for P (t) I ftundmental for the derivation

of expressions for other reliability functions, It is not used

directly in NW1. Instead, the expression for P(t) Is evaluated,

It assumed that NW will not be applied to situations where

the probability of survival in vry mall (less than 0.01 say)

and no provision has been made for this case.

The Integral expression for P F(t) corresponding to

(2.39) Is (see Mallinss o),

I M f(I I(,t).(L)di+j(I K(t))p(z)df 4- -()43

..... (2.98)

21'I

The third term in (2.98) is an integration over the subspace

D3 which contains all thoese structures that have satisfied

a failure criterion (such as ainImun strength or finite fatigue

life). or have been rejected by a previous inspction.

Referring to ligure 2.7, the third term in (2.98) for

initially cracked structures is represented by three terns;

the first two terns cover the regions,
'a * 0< .° (2-.99)

and

respectively for no <,d" The third term accounts for

all structures for which EdUnO * The expression for

P(t) is,

P(t)- f P n)f P(O) (- dddn

no no

+ Pno(td) . (n.o11

(The econd term In (2,101) Includes the two terms described

by (2.99) and (2.100))

ZquatIOA (2,101) applies for t1me following an inspection.,1

Al structures removed dunning inspections are included in the

intogrol expression for PF(t) so that the resulting ostate

for P (t) does not include any replacenent structures.,

iU

Y3

I 0"

,/

P3

*Figure 2.?7. Schematic represeatatloa of the D/D 3
boundary for gven so when ± inlu es

, (cLf.aled strues toetheor i h those
rejeo ed by previous Inatpections,

* Also iadicated are the reg ons covered
by the tist two ters representing

Dla ,(t), (equations 2,99 and 2.100

deftne th, limits),

-- "j .

For a population ithout initial cracking the expression

for PI(t) is,

. plP W 1 ez- (a,t) Ap t'1) -- ,
r f

t,

pi .J .Jo) @

2.2.11. The probabilitt of detection at an inspection

The total fraction of the population removed during an

inspection is called the probability of detection and is defined

by equation (2.49). Normally, the integral expressions for

Ps(t) or P(t) evaluated before and after the inspection

can be differenced to yield the probability of detection.

However, MRF offers a siapliying approximation (see Section

3.6.2) whereby the probability of survival is computed via

equation (2.10) from the total risk rate. For this case, an

integral expression for the probability of detection must

be available.

To derive a suitable expression, recall equation (2.49),

vi:,

Pdet(ti " t - p t)

where P(t) is simply the probability of survival at t- ti

with the limits of integration being dependent on the last

inspection time, tij. P(t) is obtained by replacing ti in

the limit equations by t, the current inspection time, so that,

(foti f = in t; flE (2.103)

and L %U Rax[R(i)*'tp A (f)j. (2. 104),00%. th %.4L)

The expression for the probability of detection is,

ittintfn d Ja c

• i- -.

-- m -
m l ngmd Imi im

The term in square brackets in (2. 105) covers the area shown in

Figure 2.8. The integration can be rearranged to yield,

- dN / (0)

.+ -P () P (-)(W. no, t)d~d ° dnO

t d

(2.106)

Similarly for a population without Initial cracking,

J~ P d t (t ,J4 - 1 =
R() j , e p (. c 0 t) d d (

ti

t f (R(*,,o,t)p4L(s)d-d
(2.107)

Note that there is no contribution to 2. 10?) arising from

uncracked structures. An inspection based on a crack length -

criterion will not reject uncracked structures. A proof load

tost will reject uincracked structures at the first inspection

only. For this inspection, the tern, j}

IRPU t fP(@9)03zt- r I(@L)tIdamust be added to (2.107)

min-

57

nI

Figure 2.8. Area ino space, for given no , representing

the probability of detection.

The area can be divided into two terms.

termi
t equation 2.106).

i
...

k _.__ __ _

58

Note that this argument used to derive the probability

of detection ignores the effect of the removal function for a

crack length inspection (2.2.6). In general the density functiona

p,(),(remembering that it is replaced by p() defined by (2.55)),

changes with each inspection. The probability of detection

given by equation (2.106) accounts for only those structures

that have cracks with lengths greater than ad. Additional

terms representing the effect of the removal function would

have to be included.

The complete expression for Pdet(tij) has not been incorporated

in the NRRF computer program because equation .(2. 106) is used

only when the simplifying approximation described in Section 3.6.2

is invoked. For the case of inspections involving the removal

function, the probability of detection must be evaluated by

taking the difference between P(t) before and after the inspection.

,1VS

3. DETAILED SPECIFICATIONS FOR TIE MODELS EVALUATED B! NERF

In the previous Chapter, the mathematical basis for the

most general reliability functions evaluated by the NERF computer

program was presented. The resulting expressions, although

detailed, require further processing before a complete

numerical specification and description of the operation of

NERF can be made.

4There are two areas in which the general expressions

are incomplete.

(i) The effects of certain characteristics and/or limitations

of the input data require explicit enunciation.

(ii) A useful function of NERF is the evaluation of models

which are simplifications of those described in the

previous Chapter, either as the result of neglecting

the variation in one or more of the basic random variables

or by making approximations which significantly reduce

the complexity of the analysis.

It is not necessarily true that expressions neglecting

variations of a given random variable can be deduced in

an obvious way from the most general expressions. It

is therefore necessary to carefully examine each simplification

and generate an appropriate set of reliability functions.

t i

It is the function of thin chapter to Complete the

general expressions and provide specifications for all1 the

facilities provided by the computer program.

3.1. model Classification ftstem

The NERF computer program has been written so that the

variations of any combination of the basic random variables

can be neglected from the analysis. If each possible combination

is regarded an a separate model, 8 sets of reliability functions

require specification. Moreover, the fact that zero initial

crack length represents a special case of neglecting the variation

of 5, increases the model count to 12. Fortunately it is

possible to classify the models in such a way that nly 4

sets of reliability functions need specification.

The classification is made according to the status of the

random variables X and 33 representing comparative fatigue

life and relative residual strength respectively. There

are 4 possibilities) and for each model thus identifiedthe

initial crack length random variable, 1, can have have status equal

to one of the following:

(i) ti4. Y-2 4 tf with density functionp

hi) constant, 0. ;

(iii) z 0, corresponding to noSt i .

Thus each class includes the two groupings Identified

in the previous Chapter, namely, Initial cracking, (i) and (ii),

and no initial cracking, (iii).

____________I
n

__nIllmumln.l , Illiu

The general expressions derived in the previous

Chapter all belong to the sarne class, (variations in both

X and X3 included). Each reliability function for the

full initial cracklng model (variations in L included) can

be written in the form

n2

For constant no, the asme reliability function is represented

by f(t,no). If the definition of f(t,nO) includes extra

terms representing the behaviour of uncracked structures

when nO: 0, it can, together with expressions for nI and n2

be used as a specification for that reliability function

for the three states for X2.

For example, the function

R
p

+. 1t; po(f)f p.)R(.3q,n 0 ,t)d (3.2)
ti

where

... (3 .3)
together with n z t I and 12 'E provides a complete

specification for P Mt, replacing (2.59) and (2.60).

I

The reliability functions for a given clas are

defined in terms of functions for given n 0 as net out below.

(i) Probbilitr of survival

P 8 (tn O) is found such that for the fu initial crack

model,
PI(t)I PS(t, 0O)p no(nO dn0 (34)

(ii) Probability of failure

If P (tno) is the probability of failure for

constant no, that for the full initial crack model is,

a2
2 P(t, no)Pn(nO)dn0 f

Note that the imIts m I and n2 ma , In general, differ

between functions.

(,ii) Probablli&Z of detection

The probability of detection at constant n0 is

Pdot(t,no) so that,

Pdt(t)j Pdt (tln0)p (a 0)% . (3.6)

,,,,._.. .,

(Iv) Risk rate

The risk rate in broken into 4 comptents;

the risk of static failure by fatigue ra(t.no),

the risk of fatigue 'lif@'4xhaustion (m#fni.wum strength) rf 1 (tno)

the risk of fatigue life exhaustion (-life limit) ri(t,n O)

and the virgLn Arisk rv(t).

The first three components bear the same relationships

to those for the full Initial crack model as expressed

by equation (3. 1). The fourth in valid only for no= 0 O.

The density function for the time to failure can

also be split into four components,
-I

Pfe(t~no) =Pj(t).r a (t,% O) 1,(3.7)

pffl(t,%)- P(t)rfl(tn O) 9 (3.8)

Pff2 (t,no) % PS(t)rf2(tjnO)
(3.9)

and pfv(t) a Ps(t)rv(t) . (3.10)

In equations (3.7 - 3.10) P(t) is the probability of

survival relevant to the current no status, i.e. If

n is constant P(t)a P(tno).

In practice, integral expressions for pfa(t.5O), pffl(t,nO)

pff 2 (tgn 0) and pW(t) are obtained. The component risk rates

can be obtained via equations (3.7 - 3. 10). The total

"1

risk rate is then given by,
n2

z(t): Pf(tn 0)dn0 /P.s(t) (3.11)

where

+-PMr(ttno). (.2

(v) Density for streazt

ifit(R~ton0) P5(t)p(RjhZ.,t.%) (3.13)

then
p9(17t) L rj~t%)p(&O4n/JP(t) (3.14)

(iLv) Fadilr denity for atrnath

Although an equation siilar to (3.14) can be written

for p,,2 jt),p an alternativet in terus of functions

already defined above can be derived. This alternative

expression leads to computational efficiency by reducing

the number of integrations that have to be performed to

generate a complete set of reliability function.

Defining fRf2(,Rtao) to be a functlon such that

f p 2(to no)- fit, f2(R't'no)dR (3.15)

pf (t) PR(R I t) %fR (R, t 0nO) r2(p) 4- r(] ,Ralnpft I (ton O)

t f Rf 2 (]Rt'n O) (3.16)

ge(t, no) sar,

Then for the ful initial crack nodel,

PiRIt) f (tlnO)Pn0(RO) dn/pj(t)(3.17)

AL

For a given cla the 9 functions, PS(t)# P7 (t'%n) 1

P etp%)p fa~tpnOJp ffi ~OI, # ff2(tboI, Pf(,&)9f11%inO)

!and fR'f2 (R, tqno) are defined by integral expressions, All other"

reliability functions can be expressed in terus of these nine.

The lizit-s a and A? are r*equired, in the case of the full

initial crack odelp for the functions PI(t). P1 (). P4 *t(t),

rs(t), rf(t) (ar M(t).r2M p1t(RIFt) and p1 (RIt).

a f f f2 P

3.2. Iinput Data Svecifications

Before the classification method described in the

previous section can be applied to the general reliability

functions, it is appropriate to consider the properties of

the data upon which the reliability analysis will be based,.

In particular, limits imposed by the data may have repercussions

in terms of the equations defining the limits of integration

in the various reliability expressions.

This consideration is presented here in the form

of specifications for the input data for the N11V computer

program. In addition to the specificationa, example

data will be described. These data define two populations

of structures and applied load sequences which will be used

to demonstrate various aspects of the methodology and computer

coding as the need arises.

The first set of data pertain to an idealised set

of structures: the input functions have relatively simple

forms. This set, referred to as 'example A' will be used

predominately for models without initial cracks.

The second set of data Is more typical of an'aircraft

floot and will be used as input data for intial crack models.

It will be referred to as 'example B'.

1,

-I

3.2. 1. Crack growth function

The relationship between crack length and time ins

assumed to be specified by a function which represents the

average behaviour of the population of structures. This

function,

am a(i) (3.18)

in defined for values of the argument, median time or

age, in the interval [ti tf) where ii is the median initiation

time and tf the median fatigue life for the population.

It is an important feature of the ZIRF computer

program that this function, together with other input functions,

in defined by a set of ordered pairs of argument and function

value without recourse to functional forms. The ordered

pairs are assumed to be such that a cubic spline fitted

through them defines the continuous curve representing the

function to an acceptable degree of precision.

The crack growth functions for the two examples are

shown in Figures 3. t and 3.2. The data for example A

was obtained by assuming that (3.18) was the solution of,

dt 3 (3.19)

such that when 400 hr. az.*.a; when t .tf 4a Ohr

a u.O.415m. The realting function Is,

a a6.164/(4176 - 0.9T) . (3.20)

I

0.+

0.01I a 0.9

Figure 3.1. Crack growth function,, asa() for

I exzamqae A.4

I
I

vo

0.2-

0.0

2.5

Figure 3.2. Crack growth function, a a(t) for

example B,

11

The data points indicated in Figure 3. 1. are defined by

equation (3.20): the curve is the cubic spline fitted by MWN

through the points. Note that, as illustrated by this example,

the initial crack length a(i.) can be non-zero.

The data for example B represent a 'beat fit' curve

for measured crack growth. It is not necessary that the

precise form of the function is known.

A requirement of the reliability functions is

that the inverse crack growth function is available, i.e.,

t - a' 1 (a) (3.21)

for at, a&af, where ai-a(Ti) and afb- a(t). This function

is obtained by solving (3. 18) for t, given a. Inverse interpolation

is not used because, in generalZthe inverse interpolating function

is not identical with the forward interpolating function. The

procedure used by EM ensures that the difference between

a given value of t and a'l(a(i)) can be made to be insignificant.

46

I
, !

r ~ a~o.)

f 91.0

.

Fl1gre 3.3. Inverse crack gowth function for

e.1ple A.

1*
H'

= .=,, .• m n, l m 1| 1||i I

2.5

1.5J

cL"cI."1.

7±5ure 3. Li. I:averse ozPac Urowth functi.on for

| exampl1e B.

I
I
I
3

3.2.2. Strength decay funct.on

The relationship between crack length and strength is

assumed to be defined for the maAian structure, viz,

over the interval (alsa21which does not necessarily coincide with

Ca±,a. For a a,, 9i(a,) and for a>a, , iw(a 2).

As was the case for the crack growth function, the strength

decay function is defined by a set of ordered pairs which are

used by NIEF to establish a cubic spline representation for

, R(a).

The strength decay function for example A is shown in Figure

3.5,. This function is of the form,

s o.a " (3.23)

with Cl chosen so that (a.) a 100 ,.Ol.

A l3 .6a3a'* for a& Co.1,1). (3.24) 1
The corresponding function, derived from experimental I

data, for example B is shown in Figure 3.6. i

The strength decay function is used to generate the I
relativeS tZ~reWh. function, y(i) , (equation 2.25). This

function is defined by a set of ordered pare of t and -'()

where the values of T are the same an those used to define

the crack gowth function, is thus defined over the |i

40.0

30.9a

Fivue 3.3. Strengft decay functions Ru.R(aj for

example A.

W99

Figure 3.6, StrenMt decay funotiong Rx R(a)q for

ozauple B,

interval . if For t(1= y1 and for t>t:,, jyzo.

The derived relative strength functions for the two

examples are shown in Figures 3.7 and 3.8. Note that the

function for example B has nearly zero first derivative for

t ^ t 1 . In order to prevent numerical problems when defining

the inverse function, '-l(t), linear interpolation is used

for t:~ it where tis t value of the last definition

point (or node) for which V10.9.

An inverse function is ddfined, either by linear

interpolation for ii_ t or by solving the equation

"'r(t) fo r -t uing the cubic spline for ForW > 1,

t and for Y tew(f) ;if*

The derivative, d. is generated by differentiating

the interpolation function (either linear or cubic spline)

directly. For t 4ti 0'= 0 and for t f t 0 o.

I

'VA

Tim .7 eaiesreghdcyfnto,

fo0eamleA

II

I 7?

I

r 1dB

0.6

I
I ~w..

F

I. ___________________

1.U ZS

Plim. 3.8. Nelativ atr.uth doa.7 tuactlou,

for .zmpl. 3.

7'

K):

3.2J. Probability of load ezceednce

The risk rate for a structure of given strength, R, is

related to the probability of load exceedence, defined by equation

(2.10), viz,

r]R = L~~r . (3.25)

The specification for ! a(R) can also be regarded as a specification
for nm (R): if lr 1, the two functions are identical. The

function PL(R) is assumed to be defined by a set of ordered

pairs of R and F(R> for 11,,,j 1 fR =. Rain is the first

node for P(R) and defines the minimum value of strength. R..

is the mAyrum value of load in the applied sequence and

corresponds to the last node in the definition of PL(R). j

The function-PL(R) and the load application rate 1 r are

used by NMWF to define rk(R),(sometimes referred to as the

load exceedence rate) via equation (3.25). Interpolation is

obtained by taking the natural logarithm of rk(R) for each of J
the nodes and fitting a cubic spline through the resulting ordered

pairs.

The probability of load exceedene for example A is,

corresponding to a density function for load application,

- 30)5 (3.27)

for 30 4R it10. , ith I XuO,

(r) , O.ZP-2.303(R -30)). (3.28)

* , - - - ia l illl l l Ili ii

This function is shown in FiSure 3.9. Mhe nodes are at

R 2 30 (10) 1 TO and the Interpolating polynomial in, of course,

linear for log(r,(R)). Note that althouSh the interpolation

within 11127 uses natumr.al logbrithue, the functions are

plotted after taking logarithms to base 10. 4

A typical function based on experimental data is used

for example B and is shown in Figure 3. 10. Note that the

distribution deviates from exponential for mall valuea of

' only. For this function 1= 500 000.

I I

[.
lI

I mma mmemme mnmH

-2J8

-7.8

I II IuI

LOAD,

Figure 3.9. Risk rates rgrk(R) 00R.lr for

eXaMple A.

I'1,

4.0-

3.3-

15.0

1o91,ILOAD) -R.

-2.0 ,0 Rs atsrmr()

-3.0lrfo

exapl.B

94

3.2.4. Inspection removal and crack detection functions

The crack length inspection removal function S(ftt,ti

(Section 2.2.6), defined by equation (2.52) can be written in the

form

S(QC4A, 0 ,t, ti 3) , H.(t d-no)t/tij 6 no- S(t) (3.29)

where

t no(O - no)tijlt A (3.29a)

(The effect of the unit step function is taken into account

by the integration limits in the expressions for the reliability

functions. The function Sj () which remains invariant with respect

to the inspection sequence is specified by defining a function

Cd(a) called the crack detection function. This function is

specified by a sequence of ordered pairs with a in the interval

IO,ad) where ad is the crack length beyond which the inspection

is assumed to be perfect. Cd(a) has the general form shown in

Figure 3.11

Cd(a) is analogous, in fact, to a cumulative probability

of detection for crack length. The term crack detection function

has been used here to remove confusion with the probability of

detection defined in Section 2.2J1.

NERF makes the conversion from Cd(a) to S(t) via thedE
relationship,

S () W 1-Cd(a ()) (3.30) j
so that S () has the general form shown in Figure 3. 12.

3-

i i tU

1.0.

Cd (00.) r

0

Figure 3.11. General form of the crack detection function.

~, U
LLI

Al 6A14, F NtFF A COMPUTER PROGRAM FOR Tiff NUMERICAL EVALUATION -/
OfRE(I AB ILI IVF FUN. U AE RONAL)IU CAL RE SE ARCH LABS
R(FOURNE (AUS RAIIA) 6 D MA NSON ET AL. SEP 83

AY. 1 AISTRU 397 F/c q/2 NNOliE111111 OmimhNONEhhhh

I oIII11111111n

ILt

(

Figure 3. 12. General form of the crack length inspection

removal function. This function is derived from

the crack detection function and the nodal values

of t correspond to those of a used to defined

Cd(a)*.

,1

The function S Mt is thus defined by a sequence of ordered pairs

*of T and Sit where the values of t correspond to the values

of a used to defined C d(a).

The definition of C d(a) is used by NRRF to set values

for a ad t d)(a (ad))S Provision is made for a d to be specified

independently, in which case the inspection process is assumed to

be perfect and the specification of Cd (a) is ignored.

Note that C d(a) need be defined over only a limited range

of a. For values of a outside and less than the lower limit of

this range C d(a) is assumed to be zero.

Igg

3.2.5. Density functions for the basic random variables

The density functions for the basic random variables

(comparative fatigue life, initial cradc length and relative residual

strength) are seemed to be continuous and dependent on at most

three parameters in the following way.

NINE provides a library of standard probability density

functions which are defined by a single dispersion parameter for

a standard random variable, Z say. Currently this library contains

three density functions:

(i) Log normal,

pZ(W). -- L .zp-*[log(s)AJ 23 (3.31)

(ii) eztreme value,

Pz)akz k-1ezpi~k and (3.31a)

(UL) gamm,

pz(Z) 6- k'lezp[-zI/r(k) (3 .31b)

In each function, k is the dispersion parameter.

Each basic random variable Is related to the standard

random variable by an equation of the form,

- (z_- o)/v (3.32)
where v and * are called the location and mimimum value parameters

respectively.

....
!p d,

For each basic random variable, the density function is

completely specified by selecting the appropriate standard

function and defining the dispersion, location and minimum

value parameters. The specifications for the two ezxmple

problems are presented in table 3.1.

Of importance in so far as the reliability functions

are concerned# is that each density function will be significant

over a restricted range of its argument. Normally

the range of a random variable will be found by hF and

will be defined by the values beyond which the density Is

less than some mall value, typically o-8. Atrntivy,

the range may be restricted as part of the definition of

the input data. This is particularly true for initial crack

length when the range is restricted by some inspection procedure

prior to the commencement of life. For such cases, the

density function is normaliaed, thus for X2 says

p(x 2)., x2)

l2:maz X 2 2

Z2 ain~ z 2 dxI

where p_(x2) is the density function defined by the input

paremeters. and z minand x2taax are the defined extremitles

of the range for X20

(Note that the current version of the computer program appie9s

this normallsiag procedure to the density function for initial

crac length only.)

qO

Random Type Dispersion Location Min value

Variable (k) (v) (e)

Comparative log 0.2 0.0 0.0
Fatigue Life normal

Relative

Residual extreme 10.0 1.0 0.2
Strength value

Comparative log 0.2 0.0 0.0
Fatigue Life normal

\ B Rel ati ve
Residual extreme 6.0 1.0 0.6

Strength value

Initial Gamma 3.0 120.0 10
Crack Length

Table 3.1. Specifications for the denaity functions

used in the examples.

ii

Ii

9,

3.2. . Model parametere

The reliability functions depend on several parametere,

in addition to those which define the probability density

functions, some of which are defined as separate parameters and

ome as integral parts of the median functions. The various

parameters and their methods of definition are described below.

i) RO: Median vLrg.n strength

The median virgin strength is an independent parameter

for the analysis and has the effect of specifying the

transformation from X3, (relatiye residual strength), toa

(vir&Ln strength), i.e.

Equation (3.30) allows the density function for virgin

strength to be defined,

If the variation in I is neglected, Ro defines the

vir gn strength.

(il) itr Aver*We load aulicatIon rate

The averae load application rate Is an independent

parameter which completes the specification of the

relationship between the probability of load exceedance and

3 the risk rate, equation (3.25). la effetp Ir determines the

time seae for the reliability model.

I

(II!) RMIA' Minimum value of strength

Rmin in defined by the first node of the sequence of

ordered pairs defining the probability of load exceedanoe.

It is interpreted by NEfF am the minimum value of strength

below which structures can not exist.

(Uv) Rmax: Maximum value of strength subject to risk

Rma x in defined by the last node of the probability of

load exceedance. For RR.., rka 0. This parameter has

the effect of limiting the integration domains for the

reliability functions.

(v) Rp: Proof load limit

K is an independnt parameter which defines the criterion

for proof load inspections where all structures with

26tRp are removed. If Rp- . no proof load inspections

occur,

(vI) Ti: Median crack initiation time

is deofned by the first node in the crak growth function

and usually denotes the defined median crack initiation time.

However, N.? assumes the added interpretation that t, denotes

the age at which structures start to experience a risk

as a result of cracking. For example, if and 10> R..'

structures will commence experiencing a risk rate for

t".r(R a). This defines an effective value for Which

overrides a smaller defined value.

93

(vii) tf: Median fatigue life

tfis defined by the last node in the crack growth function

and deteraines the median limit for age. All structures

which reach an age equal to tf are deemed to have

failed. The question of fatigue life limiting is condsidered

in detail in the following Section.

(viii) ao.max: Maximum intial crack length

For a model in which ao (or no) is allowed variation, ao maz

is an independent parameter which specifies the upper

limit for initial crack length.

if a0 in not allowed variation, aOmax determines the

constant value of s.O and no via n0 -a'(aOmax). If

ao , 0ax0 , N selects the non-initial crack version of

the current clas. (Note that n0 - I corresponds to

a 1 (0) so that a non-initial crack model actually

corresponds to no f i- rather than Just 0 .0.)

(ix) ad: Crack length Inavection criterion

ad is an independent parameter which defines the criterion

for a crack length inspection. The age limit used in the

models is td where

I t a (ad) n t(3.36)

For a model with no crack length inspections, t4 -f*

* It ad is specified as zero, then a crack detection function

* must be defined.

A summary of the model parameters, their definitions and

values for the two examples is presented in Table 3.2..

Symbol Name Definition Example A Example B

R0 Median virgin Independant 100 230
strength

1r Average load Independent 10 500 000
application rate

Rmin Minumu value of First node of 30 20
strength PL(R)

N Max mu value Last node of 110 180
of strength pL(R)

subject to risk

R Proof load Independent
P limit

tI Median crack First node of 400 1
initiation time a(t)

tf Median fatigue Last node of 4200 2.37
life a(t)

aomax Mai.mu initial Independent 0.05
crack length

ad Crack length Independent
inspection or last node of
criterion Cd(a).

Table 3.1. Summary of model parameters and their values in the

two sets of example data.]
I1

Ut

3.2.7. Fatigue life limiting

An assumption made by all the reliability models evaluated

by MHF in that each structure has a fatigue life liJit X.ven by

the time of transition from D2 (cracked time zone) to D3

(failed time zone)* The model equations developed in Section

2.2.3 can be used to derive an expression for this limit, tf,

by reionsing tha t corresponds to the instant when the

structure has either reached an age of t, or has had its

steth. reduced to Rain#.so that, (U-, ,

tI. I €,- X {U;fT- Rmj.A/ o) - a7"cx,)) (3.237)
~Any structure reaching this fatigue liLfe limit contributes to

the rii of fatigue life exhaustion, rf*

An observation that can be made from equation (3.37) is that

structuresdth z3> RmijtA f) have fatigue life limits that

are Independent of the strength random variable, . For these

structures the fatigue life limit can be interpreted a. the

time of instantaneous strength decay (or 'runaway' crad growth).

However, this Interpretation assumes that only the stronger

structures oxperience runaway cracking which may not be the

case in general. In fact, placing such detailed interpretations

on the modes of failure of structures reaching their fatigue

life limits is open to argument and the model needs careful

examination in cases where the riit of fatigue life exhaustion is

U dominant.',
'I_

The significance of fatigue life limiting for a

given set of data can be estimatedgin the meaj% by computing

the loss factor at Zf for a population without variations, i.e.#

tf

a X j 1 r [TL (10)" PN 0L(i f1))4A

(3.38)

This expression represents the fraction of a uniform population having

the median structural properties that would survive until tf

under the influence of the load sequence represented by PL(R)

If this fraction is smal (say < 10 "4) then the risk of fatigue

life exhaustion will be an insignificant part of the total risk.

However, if this term is -1 then the model will be dominated

by failures due to fatigue life limiting. Such -a case will probably

represent a load spectrum which is too weak or, as equation

(3.38) indicates, a load application rate, lr' which is too small.

-1

n

q7

3.3. Data Limits and Thir Effects

The Integration limits appearing in the expressions

developed in Chapter 2 result from assumptions inherent in

the reliabjIity model. In practice, the integration domains

defined by these limits may include regions where the integrand

is insignificant. Although such regions present no essential

mathematical problems, improved performance of the numerical

integration algorithms L achieved if the integration Limits

are modified to explicitly exclude these regions. The numerical_

requirement for explicit exclusion of insignificant regions is

particularly important in those cases when the boundaries appear

as discontinuities in the integrand.

Modifications to the integration limits arise from

the following limitations Imposed by the data specified in

Section 3.2.

(i) Truncation of load exceedence probability

F L(R) is defind for RR2. a The lower bound for

R Is already incorporated in the reliability expressions

via the fatigue life limit assumptions. The upper limit

must be incrtyoi"d in expressions where the inteprand

includes FL(R) as a product term as in the calculation

of r (t), (e.g. equation 2.75).

I
!K

qg'

(Ui) Restriction of random variable ranss

The range of validity for each random variable is

restricted, either by truncation or by the fact that

the associated probability density function in significant

over only a restricted range of its argument. Accordingly

the basic random variables are assumed to be limited

1by

x,,, nS X' e Xi,max (i a,2,3) (3.39)

from which limits for the transformed random variables

can be found, i.e.,

m i C max (3.40)

min 6S SO max (3.41)

Io'mi a S no- S no.mex (3.4)

The limIts for no can be readily included in the expressions

for n1 and n2 (see equation 3. 1) for each reliability function.

The effects of the liits imposed on of and R can be understood

by constructing their positions in the (-c,q) plane for constant no.

Typical juxtapositions of the limit boundaries are shown

in figure 3. 13 which now replaces figuwe 2.3 as the basis for

the calculation of the reliability functions following a

combined proof load and crack length inspection.

To cope with the seemingly complex interaction of the

Integration boundaries, the following conventions regarding

notation and default limiting conditions are adopted.

3 4.

IR

I'L
Fiue31.Tpcljxaoiino h aiu ii

I /0o

3.3.1. Default limits

Despite the apparent freedom with which the various parameters

in the model can be specified, there are certain 14liting relation-

ships implied by the model equations. Uaing primes to denote

input data specifications the following sequence of equations

exemplifies these relationships and defines new values for

the various parameters. Throughout the remainder of this

document reference to these parameters will imply the limiting

relationships.

2 max mj~a 1](-3

Ki ' (3.45)

t f min 7f 'Ri/a (3.46)

Td in -(pWzA(3."4?)J

an a "mi." (3.48)

3 0,mnaz M in ItfeUO9maxl before lot inspection)>

m in tj '#~a after lot inspection.

(3. 9)

U

I

A

o j /0/

3.3.2. Notation for limit functions

The following functions are used to denote integration

limits determined by the various boundaries illustrated in Figure

3. 1a . These functions encompass the various parameters used

in Chapter 2 and have been generalised to allow for the

effects of reductions in the number of random variables in the

model an detailed later in tbLa Chapter.

The functions are used primarily to delineate the D2

subspace for cracked structures in (, space given no.

(i) (R): Upper bound for a domain bounded below by

where fd(nO) represents the upper f bound resulting from

a previous inspection, e.g. for the model described in

Chapter 2,

ed(nO) * no + (1d - no)t/t " 3.

Note that t. defined by equation (2.54)

corresponds to Tf(RmLn)OI
S(ii oc(a,p): Lower bound for t, given and no for the D2

i subspace.

-. (

Where f(nOq) defines the translation of the proof

load boundary,

Si~nof) %* (ot - no) tia/t (3.53)

19. (equation 2.58) andot ; (2,70) correpond to

.'(n.q) and Z(oqlt) respectively.

(iii) R (mnR): Lower bound for R given no and for the

D2 subspace,

C Rn 1 ~e) r*(n 0 #)jf) (3.34)

19€ zgim) 'tin .,/Rc) /f € .t)

(2.84), R;(n 0) (2.90) and R*(T,) correspond

d R (A0 ,P), iR'(n 5 ~tf) and R (t ot) respectively.

(IV) oe *R): upper bound for oc siven f ad no for a domain

bounded below by R w..'r()

.C o)- 01441a= OR /f(pj (3.56)

(v) cyr: Lower bound for *-for the D, subspaoe of uncra1ced

structures,

max&= r,.. as,,,.nRp . (.5?)

(vi) 0 1(no) lower bound for gven no, for D.

t U(no) a ma in.Usp t-3, .. (3.'8)

/03

(vii) PIE Lower limit for for an Integration along

the line R oIt()in D2 9

where 2 p, is the solution of

For convenient reference, these functions and their definitions

are listed in Table 3.3.

!t(R) mintf d(RO)3sZ %rwa

R.'(4o,0) max f aL,, (P),h2,/t,(.o,)A

~~p2 aaxttr (R/Lns 2

eoln of R 2 '(f/(inl)

Table 3.3. Limit functions and their dft-4itona,.

i,,i I

3.3.3. CoUditions for the exisence of an into ation alone

the line R-.W(P).

Some of the reliability functions involve integrations

along lines (in Lt ,I space for given no) of constant R.

Conditions for the existence of much Integrations can be

used to define limits for the no Integration. The arguments

presented here generalise the results expressed by equation

(2.79) for an integration along the line R agm~ln

Referring to Figure 3.14, it Is clear that an Integration

aln atcf(f) will exist If,

t (R)> f pR

or min tj tf (no)# ~ (M A a (R*~n)* 4

... (3.61)

Xquation (3.61) cAn be interpreted as twelve separate inequalities.

For a given net of model prameters, only one of thes inequalities

will represent the limiting codition for the existence of the

Integration.

Some of the inequalities in (3.61) are always satisfied

by the default limit conditions. Others, however, impose

limits on the ranges of no and R. Taking the first term of the

right hand side of (3.61)t the set of conditions,

are< s.t , T1

are satisfied by the default limits. The condition -

L -

* FiguLre 3. 14. Definition of end points for an integration

along the line ~'rA

yields a lower limit for R. The condition,

y1 I(WK. Ln)-Cfd(nO) is equivalent to

10< (t.td -f(RA ti)/(t - ti) (3.63)

for Pd(nO) defined by (3.51).

Taking the second tern of the right hand side of (3.61),

three -onditions can be combined,

where . (3.)

Fquation (3.64) is equivalent to

;>(y') , o.f')), which

for Pi(nOt) defined by (3-.3) leads to

no < (t?7"*(Rt(f') /10 - 't:L)/A -I (3-66 .)

The condition

OdnO > @;$R

Is equivalent to

u0 (,(t.'d - 7'(R1td)/tp)tiQ3/(t -t~. (.7

Taking the final term in the right hand sid, of (3.61)

end remembering that

' ithe nontrial inequalities ape,

1' /07

(3d(nO) > m.in *(3.68)

and -I(VOa) >f.-0

II

Equation (3,68) together with (3.63) yields,

% < (.J d - max '(IV*,,), ti j)/(t - ti).

(3.7t)

Now the inequality

(RpfC /R) <Td implies thats

'(R(/Rp > ' o that (3.67) and

(3.661 are mutually exclusive. Equation (3. 710 is relevant

only when (3.67) sa be. quations (3.66), (3.67 13.69) and (3.71)

therefore be combined,

(3.72)

which equation can now be used as a generalised definition for

f (R), which was previously defined by (2.79).

Eqations (3.62) and (3. 70) define limits for I,

'~*,~)~ U ~(3.73)

3.3.4. Conditions for the existence of integrations alon the

The calculation of the riak of fatigue life exaustion, rf.

involves an integration along the line tf. This integration

exists if,

-'(mi) tf (3-74)(
whieb is equivalent to the three conditions,

("M,.,,az k tEf (3.76)

and d(nO) et tf (3.77)

Condition (3.76) i; always net an a consequence of the

default limit, (3.46). Condition (3.77) yields an upper iint

for no; for d(nO) defined by (3.51),

(!
no (C t t±)A(t - tia (3.78)1

Sfn as defined by (2.80).

non

3.4. SOecIfioatio for the Iost General Model

Having detailed the effects of the characteristics and

limitations of the input data, it is now possible to formulate

complete specifications for the reliability functions evaluated

by NIEF and the remainder of this Chapter is devoted to this

task.

The discussions to this point have been primarily concerned

with the mathematical development of the various reliability

functions and the notation has been generally optimised to

that end. Throughout- the remainder of this document, the

reliability expressions will resemble, as closely as possible,

the forms actually used to generate the computer code. (One

example is the fact that the code performs the outermost integration

over initial crack length (aO) rather than initial age (no).)

-any of the expressions presented in the remaining sections

of this Chapter will be stated without necessarily presenting the

full details of their development. It is assumed that the

arguments presented in the previous sections are sufficient

for the reader to derive the sane results without detailed

guidance,

The model classification system described In section 3. 1

is used: the most general model is the class allowing variations

in both 1, and 13 and Includes the three groupings based on the

status of the initial crad length random variable, 42-

The specification for this model contains two parts; a

specification for the integration over crack length for

each reliability function and a specification for the integrands.

The first part is general and applies to all the classes of

models evaluated by NWER. The second part pertains only to the

most general class.

\I
I

I,

___ ___1

3.4. I. Speggficationa for the reliability functions as integrations

over initial crack length

Rach reliability function can be written in the form

of equation (3.1) an an integration over initial life or,

alternatively, an an integration over initial crack length.

The former choice was preferred while describing the theoretical

development. The computer program actually retains initial crack

length (or a0) as the variable of integration so that (3.1)

is replaced by,

f(t) = Pa0(a0)f(t,a 1 a0)% (3,79)
a(n 1

Note that the intogrand is still expressed as a function of n 0 .

The numerical evaluation of the reliability functions is,

in fact, based on a hybrid notation whereby a0 is used for the

I outermost integration. and ni sn used for all other representations

of the second random variable in the model. (The reasons for

using the hybrid notation are that it is numerically more

(. officient, bearing in mind that the function a(f) is defined

as a series of ordered pairs, to evaluate pso(a) directly

rather than p no0(no)= p (a(m 0))da/dn0 and that the evaluation

of the limits of integration and other logical. processes

associated with the inner levels of integration are more

efficiently expressed in tems of n0 rather than so)

I The following specification for the initial crack length

integrations for the reliability functions evaluated by Nil?

follow, broadly, equations (3.2) to (3.17). The major differences

E j

are that the equations presented here are recast in the form

of (3,17) and that some functions represent combinations of

functions that were previoualy treated as being separate. Note

also that the probability of survival Is not evaluated an

an integral expression but in, instead, dr.ived from the

probability of failure vla equation (2.5).

The reliability functioAs evaluated by UNIF ares

(i) Probablity of failur,

(a(n.)

Pt) P?(ts)v o)P(&O)dO + a(&n2))
Ja(n1) -

(fro." (3.-)). *.. (3.80)

(i.) Probabi:ityl of survival

ps(t) = I - P1,(t) (3.8)

(1,) Probabilty of detection

a(2)

dot (t) I Pdt(t,-o)Po(O)dao ; (3.82)

(iv) Vrin risk rate

(,(t) - (xoO)f,(t)/P,5(t); (3.83) LI

V t_

(v) Ringk of atatic fgilure by fatigue

)Pfa(ttlW)P (aO)daW/PS(t) (.4

(vii) Rlsk of fatiltze fr&cture

aC kf2)

rf(t)z a LPrtu) fft 3 2)].(&O)dao/PS(t)

a~nf). 09*0(3.85)

011±) TOtW rn

(viii) Dendty for streuxt

frow^ (3.a..J)

(ix) Failure dnsity for strength

a(nn)

p2(Nlt) E4 Atnr2R 4 (RgBain)pff l(tqUo)

0**S (3.88)

1')

The functions P1 (tnO), Pdot(tno), Pf'(t), pfe(tno)

pttlftno) , pta(tnO). fR (R,t,n0) and fR, f2 (Rt,nO) were
defined in

Section 3.1. These functions, tosther with the limits nl, n2) Nv N_),a

n. 9 and n may chanp between classes of model and are therefore

specified separately for each class.

Note that, although the caution was given in Section 3. 1

that, in general, the limits a1 and n2 may vary between reliability

functions, all the models described herein are such that all

the variation can be accommodated by the addition of the five

extra limits ndl, nf 1.,.af 2 p nR1. and R2- In equations (3.80)

te (3.88) nl and n2 remain the same for a given class.

(Note that expressions for the extra limits will be given

later in this Chapter.)

IIBl
, qK

I

3.4.£0 Seclfication for the integrand functions for the

most zeneral mod l

The integrand functions for the 'full model$ which

accounts for variations in both X and X me now be specified.

Each expression can be derived by exainnation of the appropriate

equations in Chapter 2 end including the correct limit functions

from Table 3.3, For this class, the following functions

have a special form;

P(f) = I W(t/(O - nO))t/(- no) , (3.89)

H(Sto ' 'no' t) exp[-t/(' "no)[8 (notO)r -1i ()t. .r 2(4c,,)d@11

max: ti , J2

• • • (3,90)

@d(nO) .e+(t' - n)t/ti (3.91)

P±(lv) no+ - no)t/t • (3.9,

The integrand functions are;

t f(%in5 A 2(FOmax)

P F(tono)w- (If - K(aCI3,n09t))p(GL.)&dd

JPI(-o)

1- o ~0)[p t(o - xp -r (d-) t)di. t.(4 PO(I)

S•(.3.93)

Pd ~ (no) L*J(n(~ f

tf~((%a) az
+ pof~ k()K(osot0*d

Jtd Ilk(Rlf

2 je)c

(3.96)

(no~t , ... (3.98)

j- (sbo)%a(a - it p)P.C(I).Ozp . r,(Rot~po(;)) 3-II)

"17

fR f2(Rt,no) S(O - R(ti, tf))pO(ittf(tt - n0) f

t Ir,(T)

K ftoot (3. ioo

where * in (3. 97) I8 equivalent to Yl(RaLn/.

The terms appearing in the integration limits for ao

in equations (3.80) to (3.88) are;

11 nl dT -a- 12,O min , (as defined by (3.48)), (3.101)

na=.i+ZO 3maD (t.Zd - Pmint%)/(t-ti3) (3.102)

(where nO ma x is defined by (3.49))

nfl = nOmi n (3.103)

kf2 M Miflfl~,~E rne4F, f.(m (3. 104)

nR1= nom:n (3.105)

3.106)

where fno (R) and fno are defined by (3.72) and (3.78) respectively.

i
*I

I
I-iI

//gr

3.5, Derivations and Specifications for Simpler Models

The three remaining classes of models have variations

in at least one of the random variables X and i3 ignored and

may therefore be regarded as simplifications of the full model

specified in the previous lection, However, the derivation of

the appropriate integrand functions and limits is not

necessarily a straightforward reduction of equations (3.89)

to (3 .106). For each class there are some functions for
(

which a more satisfactory approach Is to derive the function

using the general methodology described in (hapter 2 and the

assumptions appropriate for the reduced model.

For this reason, the specifications for the remaining

three classes of models are presented separately and that for

a given class is preceded by a brief description of the

derivations of those functions which are not obvious reductions

of equations (3.89) to (3.106).

I

I

i .i

'I

3.5.1. constant relative strength

If i i held conAtant, the virgin strength d wi.,

via equation (2.29))also be constant. The convention taken

here is to set x3 u I so that To is the constant value of

virgin strength. The reliability functions for this clas

can generally be derived from the more comlex forms by

setting,

d(ax: a O sin a i0 (3. 107)

and ignoring the integration owrdt. For example, the

expression for the probability of survival for the full

initial crack model of this class Is, (fro-(..C2.-S-)

Ss (t) _-i p no (no) (no po (R ~o 9ot) l do
1 (3.108)

An important consequence of the default limiting

relationships (3.44) and (3.46) is that

if A o 1 (A) . (3.109)

Failures resulting from fatigue life limiting are the same

as those resulting from the strength being .reduced to R.In

Which of the two Identicle terms, (pff1 (t n0) or Pff2 (tn 0)), is taken

fo r f(t) is arbitraz--and it is convenient for the purpose of representing the

failure density for strength to associate rf(t) with

failures at Rm min

For this class of models, proof load inspections are

Identical in effect to crack length Inspections with

y(3-l1o)

/2D

The derivation of the density for strength requires

careful reconsideration and can be made by transforming the

integration in (3.105) to one over R, vig,

f 2 -(01(no))

P st p no(no)) i,(y(t))K(. '(N/a 0) .%o.t) dR%

a (f 0 t t*Rani j fO-(n
0)3p(YP 1 fW))N(I

0 .f 1 ()4) %'t)dn d

Rin 1 ol'

(3.111)

(where the prime denotes differentiation by the azipmont of-y.)

Equation (3.111) leads to the first term In fR(R,t,n O) listed

below (3.122). The second term can be derived by reduction

from (U.99).

The conditions for the existence of the intgrand

In (3.111) are,

where '*R is, from (3.50)o given by,

t ~ f .Ra ALIak-#'~0$mz(3-113)

Equation (3.112) can be used to yield,

(.. .In(R/i), (%-t %(AOt t-

and

(minY< i <1T jK~ [Amn,;}

Note that a consequence of equation (3. 10q) is that

f Rmn) Provided (3.114,) in used for f (N)o equations.

(3. 10 1) to (3.106) are valid. for the a,) integration limits for

this clams.

The ao integrand. functions are;

+ 9(n 0 ,0) [I - ezp{-r,(k 0)t~ P~((3. 116)

43dt

Pt,(tf)s J piO)*rz(RO)P(s t) a~(3.11VS)

f i

Pff2(tonO) IL 0 (3.121)

0. (3.122)

I. ~2(~o 0.(.13

3.5.2. Constant relative fatigue life

If X in held constant, there in no variation in relative fatigue

life. If X1 - 1, the age of any structure is affocted only by the

random variable no and tinme, i.e.,
t +.n (3. 124)

and A n t"nomin 0 (Saz = t4-nosa (3.125)

Since the derivation of the reliability functions for the

two classes already described were based on a transformation

from to , the reliability functions for this class cannot

be generated by a simple reduction from more general equations.

(The limit equatio ns ca be generated, however, provided suitable expressions

V for §d(UO) and 6i(not) are found. From (2.51) with x.,

PRSO) -" d t i +t (3.126)

and by following the proof load argumenta, (;ro (3.3))

() - t i3 (3.t27,)

- %4 t+- . (3.128)

The integration domain for the D2 subpace can be dolineated

in (no,0) or (,a) space as shown in Figure 3.15 which replaces

Figure 3.13 for this class.

The probability of survival for the full initial crack

I model for this class in, (fro. a))

IPaSt)Z p 0_) ji(OLt 4. not not) dhsARO (3.129)

I "1 " (0 $ot+Mo)

i! I.

'V I
I

I'Io

I

Figure 3.15. Typical Juxtaposition of limits for the

case of constant relative fatigue life.
Compare with Fig ure 3,.13. -

.. 1

Note that the integrand for no in (3. 129) exLsts only when,

0o1t 4 tf(Rain) (3.130)

so that n2 becomesp

which replaces (3.102).

Following the differentiation with respect to time

described in Section 2.2.7, and noting that I t, the
1)t

probability of failure for the full initial cradc model for

this class is,
n 2 - (DO4tR ax)

(t(t) nnOqt)p

n1 C.(nono0 t)

+ R so - P,(. * *-t ,t) d*.

.0.... (3.132)

The second term of (3.132) which represents failures at Rm=Rain

can be transformed to an integration over no. Denoting

this term by rfl(t).

<.I

r I (t)ZI I P no¢ ni)P.C€ .in/f (noft)lRRn/#f(nott) nOet, not t)

.,R -t I(R3 ~oet 3T3
mi n X ai ny"(Zt) (.T 3

which leads to the expression for pffl(tpno) listed below.

The expression for pR(IF.t) can be generated by transforming

the inner integration in (3.129) to one over R and then reversing

the . order of integration. Using R -- Y(ot),
n2 ax8 (n o ' t)

P A (t)= Pno (o) P(R/Y'(not))E.,KnO+4n 0o t l) dRd%j 1. JE (nonoet) inet)

"Maxf t) t f(R) - t
:I P" (no)p.C(R/t<,noit))Il(aOgnOetonopt),J%,L gV .±3(YR.±))bp,-t notno

s..... (3.134)

which can be used to generate the expression for f (tn O)

listed below (the second term an be deduced by reduction from

equation (3.99)),

i! i
p~

12-7

The so Inatrpnd functions ar~e;

PF(t"UO):J p(n(.$Raa 1 -Ct i

.L(n 0 nt))
41- ccts&1-

t

or 8(o (1 - zrt4; -tc

... (3-135)

(3.t36 t+(no ti

A(Ru 0 4-~t)

(3-33

Pat.~~.. (3.n)139)qoq)mi;not

(3.47.)

Rff2(%oo) jet t)R-RCjt3IAu;Rj1)(t's 0

(314)

(3. 1411)

2Rf Z4.UO.z)tf(R11aJIP

pj(/f f))K(/ - ~vtf1tt1Xf

I

I
I 3 ~f2 '2 (31)

"R maz (3.14y)

and n3 n (3. TO)

!2

I
I

I+

I"

!

130

3.5.3. Constant relative strength and relative fatigue life

The final class represents the combination of the siaplification.

of the two previous classes. X, and X3 are held constant so that,

IL t 4 o n (3.1SJ)

*I m . ' (3.153)

and OminU % 9,mit Om = no, 5 x:t " (3.I

The expression for the probability of survival for the

ful. initial crack model for this class s,(z.-))

(min) -t

p)(t)z p (0)f(Io*t+onnt)dno (3.135)

and.,as was the case for the constant relative strength class,

proof load and crack length inspections are identical. m.fferentiating

(3.153) with respect to time leads to,

t'(Rain) - t
p(f, sinno)p,(ao)II(to, %,t)dn O

(tf (BRla)i' tt-toao) Pa

fee** (3.i13)

There is only one rf tor.° ft!
iA

The derivation of p1 (R -;*t) is made by transforming

the no Integration in (3,153) to one over R in a similar

manner to that used to deriLve (3.111). The result of the

transformation in,

%''(noi.)

P~~ ~ A(0- POf(R/A0)-t) '16O*9' 1(RI9-)qy (R/i)-tt) 4g.

(3. 151)

which yields the expression for f2 (t, no) listed below. Note

that, gLven R, f 2 (tqn0) exists only for a given value of a0

n 0 Tt (R/i) - t *(3.158)

The a0 integrand functions .re;

p 7(tq.%) 3 ~ (j, 00n 0 tqn 0 9 t) 'c~-t

or 1- epL r 1 (%O)tl 9 n 0 4t 4t I

Pts(t.50) ar 2 (30 9 t*%a) £(R0 *ttn-0 9 0 9 t) 1ij.t4Ino(t

.... (3.16ICU

132

pffa(tmno) a 0 (3. 164)

The terse appearing in the integration limits for ao are;

"O~zda(3.161)

n2 alatnooa ."t;(i)-ti3 (3.168)

ad rd- t(3.1 06~

Nt that clidnliisi (17)ad(13)imPlY a Pinhjt O~uton of

telateprandrahrtaazeoUortin

'33

3.6. The Construction of & Time Sequence

The specifications detailed in the previous Sections

are complete in that they define the reliability functions

so that they may, in principle, be evaluated at any value of

time. Moreover, each function In defined in such a way that

knowledge of the prior history of the function is not required.

Even the inspection procedures -- can be correctly incorporated

if the time of only the latest inspection is defined.

However$ the evaluation of the reliability functions

at a single instant of time usually provides little information

regarding the behaviour of the model. A complete time histozy

is essential, particularly if several inspections are Invov ed.

The development of a time sequence of reliability functions

is thus a significant feature of the M computer progra.

A time sequence is normally comprised of three sub-sequences

defined by the user as described below.

(i) EvaluatiLon times

A sequence of N evaluation times , tn, form the

basis of the time sequence, These values may be

specified in any way# but are evaluated In ascending

order.

(ii) Inspection times

J inspection times tii can be included In the sequence.

There are several ways In which these times can be

either specified as input data, or calculated by NERF.

Section 3,6.2. below details the options available.

(IiI) StrenOt& distribution times

A sequence of times at which the density of strength

and the failure density of strength are camputeo (for

a series of values of R) caa also be selected. For

a giLven time sequence of reliability functions these

times (M values of thm) can be either specified as

input data or be timed to eoined with each inspection.

In the latter case the distributiona are calculated either

Just before or Just after each Inspection.

These three subsequences (any of which may be empty) are

combined to form a total sequence of K values of time, t. at

which the reliability functions are evaluated.

A)

3.6. 1. Auxliary functions

In addition to the basic reliability functions defined

in Section 2. 1, the following auxiliary functions are evaluated

either an part of the time history of functions or together

with the strength and failure densities at ti.

(I) Mega risk

C

For a given value of time the mean risk# rmean (t) is

defined as the value of risk rate that would have produced

the probability of suzrival at that tine had that risk rate

been applied as a constant risk over the interval Losi.

By equation (2.10)

PS(t) -- ozp-rea(t).t (3.174)

so that#

rmean W)- 1o'P.(+ . (3-17T

(:Li) J ected time of falure

Using to denote the ra&dom vm able, time of failure,

the expected time of failure (F1) is ve by,

FromU thteqeIof(t)dt/P7:) .(3.174)fo

of I I

is computed by asamig that p(t) varies exponeatially over each

t interval (l tk,i69

/34

pP(t.) (t - t) .t tt

..... (3.171)

Integrating (3.17?) over the interval [tk.t~k3leads to

'(p k - (tf)k/P(tI) (3.l1a)

where (tpf)k [tpF (t)dt (3-17)

0

ad

Ctpt)ic tpf)klI+(k-tk i

10 g . (3. lifO) /

The recurrence equation (3. I1Q) can be used to construct the

required sequence of estimates for X(). Note that each value

(in particular the first) of p.(tk) must be non zero .A

equation (3.1'10) in to yield satisfactory results. Replacing

a zero value by a smal.l positive number (may 10-32) will overcome

this problem.

137

(li) I8stribution of strength

Given the density for strength PR(RI F> t). the distribution

of strength in given by,

R

PR(R) F>t)= p (R F>t) dR (3. 1It)

(IV) Distribution of the failing load

iven the failure density for strength, p2 (R(t), the

distribution of the fsiling load in given by

R
PR(R I t) PR (R I t) d. (3.1&x)

(v) Exrected value of strength

Given the density for strength p,,(RI I t)g the expected

value of strength E(R I F> t) is,

fo-
3(2 >) o p(Rol f '>t) (313

(vi) Expected value of the f in load

Given the failure density for strength, PR(R (t), the

oxpected value of the tailing load is,

B(2 t) Ro (R It) dR. (3.184)

i,,

3.6.2. Inspection procedures

The inspection times can be either specified as input

data or calculated by N=RF.

(i) Periodic inspections

If the inspection times are specified, the inspection

procedure in termed 'periodilc'. Complete freedom is

allowed regarding the selection of Inspection times

which do not have to coincide with the evaluation times.

In fact, it is possible to perform a sequence

of calculations for which only the inspection times

are specified. Such a calculation is referred to

loosely as a continuous inspection procedure wherein

an Inspection occur every time the reliability functions

are evaluated.

(ii) Limit risk insvectIons

The calculation of inspection times by NMR uses an

algorithm which monitors the total risk rate and

arranges that inspections occur when the risk rate

rises to a prescribed level. After each inspection

the rilk rate decreases, usually to a value lower

than the prescribed value. In the event that this does

not occur, the inspection procedure is terminated. I
ta

It is possible to prescribe a different limit

risk for the first inspection from that uses for the

calculation of the remaining inspection times.

(iii) Periodic and limit risk inspections

A combination of the two inspection procedures is

is possible. The first inspection occurs at a specified

time and the remaining inspections are computed

by the limit risk algorithm.

(iv) Replacement at Inspections

At each inspection a fraction of the population

(magnitude Pdet()ti) is removed. This fraction

can optionally be replaced by 'perfect' structures

which will not experience any risk of failure. If

thin option is exercised, the probability of survival

at any gLven time includes the Sum of the probabilities

of detection at all previous inspections, i.e.,

SI

PS(t) a. P;(t)+ 1 Pdet(tij (3.18S)
311

where tic' is the time of the last inspection

before time t and P;(t) the probability of survival without

replacement.

Examples of the results of exercising the various

inspection procedure options are shown in Figures 3.116 to

3.19. All calculations are for ezampleA. fIgures 3.1 and

/40

3. 17 show probabilities of survival and total risk rates

respectively for two calculation sequences which both

Included periodic inspections but one exercised the replacement

option whereas the other did not. Note that the calculation

was continued to the point were, without replacement the

whole population had either failed or been removed by Inspection.

The population receiviAng replacement structures finally

assymptotes to a constant probability of survival Indicating

th4tthe bulk of the population has been replaced by 'perfect'

structures. (It should be emphasised here that in the course

of normal operation of NERP such extreme calculations would

rarely be made.)

Figure 3.18 shows two total risk rates obtained by the

limit rLtc algorithm using eradc length inspection tests

having different values of ad.

!I

I

.a.

0.7

0.3S.

0.2 1...~

0. kes

Replaoeent

No replaoement ---.----

I

(Figure 3.16. Probability of survival for example A

subject to periodic inspections every

1000 hrs.

-3.0

-44
-4.0 , lo lo L1.

-7.0
0.3 t krs

Replacement

No replacement

Figure 3.17. Total risk rate for example A subject

to periodic inspections every 1000 hrs.

14L3

-3.9

-4.0-

ad..12 --------

a d IL0.2

Figure 3.18 Total risk rate for example A for the

case of limit risk inspection. Inspections

are per fect and are based on two different

crack length criteria.

3.6.3. Simplifying oution

Although the numerical Integration algorithms used by

NEF are efficient, the calculation of the reliability functions

can involve considerable computation, especially if the full

generality offered by the computer progrm is employed.

There is therefore sufficient motivation to seek computation

reduction via simplifying aproximations where appropriate.

Two such approximations are described in this Section.

(i) Comgutation of P(t) from r(t)

If the reliability functions are evaluated with

sufficient frequency it may be possible to evaluate the

probability of survival by integration of equation (2.6), i.e.,

Pp(t) = I - i r(t)dt. (3. 186
0

At each evaluation time an integral exprealon for pF(t)

(s r(t).P,(t)) is available. Equation (3.18.6) can be

approximated by asuming the pf(t) varies expo"Cltially

over each time interval, i.e., (vef dL.a (3.r9"1))

p F(M a p - tk-l)ezpi logF(t)/pL(tk.1 t kllk -d

(3.187)

which leads to the recurrence relation,

P,(t) - t (3.188) 1
kI-

Equation (3.188) can be used to construct an approximate

sequence of values for PA(t). Provided the time intervals

are mall, these approximate values may be sufficient particularly

in those cases where interest is confined to small values of

time when Ps(t) f .

One increase in computational effort resulting from the

use of (3 .188) is that associated with the evaluation of the

probability of detection at each inspection. Whereas the

use of integral expressions for P (t), (or PY(t)) permits

the evaluation of Pdet(ti) by taking the difference between

the probabflitiemof survival before and after an inspection,

the approximate sequence cannot yield this Information and

an Integral expression for Pdet(tij) must be used. Equation

(3.186) loses its computational advantage if inspection times

dominate the total sequence of evaluation times.

(ii) Neglecting the effect of losses from the DoDulation

(

The calculation of the loss factor, H(GL, ,,n0 t) involves

an integration, which may be avoided if the factor is omitted.
Various approximate expressions which neglect the effect of losses

from the population were presented by Diamond and P" and
IERF permits R(lFno9 t) to be lected for all the reliability

functions. Acceptable results can be obtained when PS(t)= 1.
However, the use of an interpolation table for the loss factor,

largely obviates the need to invoke this facility which is
retained primarily to ensure compatibility with eirlier calculations.

retaied t

4. NUMERICAL METHODS

The organisation, operation and performance of NEEF

depends heavily on the numerical methods used to evaluate

the reliability functions. In particular, the selection of

the method for numerical integration has a fundamental effect

on the structure of the code, the efficiency of the calculations

and, in terms of the functional forms of the density and input

functions, the versatility of the computer program.

An adaptive integration technique which automatically

adjusts the points of evaluation of the integrand to control

numerical errcre was chosen and has proven to be efficient,

reliable and, to a large extent has removed any dependence of

the code on the forms of the density and input functions.

The adaptive integration algorithms form the heart

of NWEE which can be considered as a computer program which

orgamisee the reliability models and data so that they can

be procesed by the integration algorithms, (in much the same

way that a finite element program orgazises the element models

for processing by algorithms for the solution of sets of equations.)

The requirement that the Input functions be represented

by ordered pairs of argument and function values necessitated

the use of an efficient and well behaved (especially in terms

of continuity) interpolation methods. Cubic spline interpolation

has proved to be satisfactory.

The calculation of inspection intervals using a limit

risk condition (Section 3.6.2) demanded the use of an equation

solver which could cope with the functions defined by the

expressions for total risk rate, r(t). The secant method

is simple and effective in this application and is used

.1 elsewhere in the code to provide function inverses and solve

equations govering some integration limits.

Other numerical methods used by NEEF include the location

of sensible limits for the arguments of probability density

functions and processes involving sequences of numbers.

(such as index location and merging of two sequences.)

All these numerical methods are general in nature and are

not particularly tied to the evaluation of reliability functions.

For this reason they are described separately from the main

documentation of the NERl' program (Chapter 5). By accessing the

NERF program as a library of subroutines and functions, these

[numerical methods are available to other programs.

4. 1. Numerical Inteo-atiog

As already stated, the selected method of numerical

integration dictates much of the structural chsractereristics

of the NBRF program. When the development of the numerical methods

for the evaluation of reliability functions was commenced at

ARL, adaptive integration methods were relatively now, particularly

those that could be applied to multiple integrations. A Pilot

study using a conventional, non-adaptive, composite Simpson

method demonstrated that the peaked nature of many of the Integrands

of the reliability functions necessitated the use of an adaptive

method.

Adapative methods for Integration can automatically select J
the points of evaluation of the iategrand and the integrating

functions. According to Rioee' , there are somewhere between

106 and 107 algorithms that are potentially interesting and

significantly different from one another, in recent years there

have appeared interesting studies of various adaptive

algorithms and methods for selecting the most appropriate algorithm

for a gven application.

With the ozeeption of a recent discussion by Fritach, Kahanor

and Lyzess, rigorous discussions of adaptive algorithms and error

estimation have been confined to single levels of Integration.

The problem of interfacag adaptive integration algorithms

designed for the evaluation of single Integrals to form a suitable

algorithms for multiple Integration has been largely open, cortainly

during the period of time during which 331 m developed.

The design of an algorithm for application to the evaluation

of reliability functions consists of two steps. The flrst is the

construction of an algorithm for single Integration: the second is

the development of suitable interfacing for the application of

that algorithm to a aultiple Integration conmiting of nested

estimate: and the control of innr intejrationsto satisfy the

requirements of the outer integrations require careful consideration.

The description of the adaptive algorithms used by NRF follows

these to steps. The mathmattcal basis and implemetation of the

alsor.thm.;or s:ingle integrat:ion is described first followed

by the description of the interfacing for multiple integration.

I' (

TI

A ____________________ _____

4. 1.1. Mathematical bas (single Integration)

-he algorithm used for eingle integration Is based on

the adaptive Simpson algorithm originally developed by McKeoman' 0

Subsequent refinements and error anslyses were presented by

Lyness * The discussion presented here is a blend of that of

Lyness and more recent discussions of error estimates by Osborne

and extrapolation techniques by Robinson

The objeotive of any numerical integration procedure Is to

estimate,

I(ab) n f(x)dx (4-t1)

a

within a specified absolute tolerance, E Most procedures

satisfy tha objective. Bowever, the Important consideration

In any practical situation is computing cost and the Ideal

integration procedure is one which satisfies the above objective

wita minmum cost, (usually expreseed in ters of the number of

intopand evaluations.) Cost minimisation Is particularly important

If the procedure is to be nested to provide a mutiple Integration

algorithm.

It Is not possible to establish rigorously the optimal

qualities of a given adaptive algorithm. Moreover, it is not

possible to prove that a given algorithm will cope with all

eventualities (see Ly ess and KageSove 0). In fact, it i"

preferable, from the cost vlewpoAt, to operate most adaptive

algorithms under conditions for which there Is a finite probability

Of failure Of the Integration algorithm. (Psilure manifests as

an infinite cost to satisfy (40).

Fortunately, this probability of failure be kept very

small and the error estimates provided during the operation

of the algorithm usualy give a ready indication of incipient

failure. Noreover, the rising cost associated with failure gives

the adaptive procedure the desirabl, property of providLng

a self indication of possible failure.

Let In(ab) denote a numerical estimate of I(ab) using

n evaluations of the integrand. The cost objective can be expressed

am finding the minimum value of n for which,

II(ab) - I(a,b) I :S Eabs . (4-2)

An adaptive integration procedure satisfies (4.2) by either adjusting

the points in a,b where the Integrand, f(x), In evaluated or by

selecting different rules. Note that the evaluation oount, n ,

includes all function evaluations made during the selection process

and not just those used to form the final answer. The algorithms

described here adjust only the points of inteogrand evaluation.

Condition (4.2) Is an absolute error criterion. An

alternative relative error criterion am be used, I.e.,
b

1I(a,b) - 13 (aqb)J IL Erel 1J(x)dz1e (4.3)

The application of (4.3) within the adaptive algorithm poses the

problem of providing estimates of the Integral term wh ich is,

of course, not known precisely until the Integration process

Is completed.

In practice, (4.3) is replaced by,

1I(a,b) - I,.(a,b)I_ relif ~ Idx *(4.4)

A running eatimate of the integral teom in kept during the

operation of the algarithm. Note that although (4.4) in used

approximately during the algorithm, error estimates can be made

on an absolute basis and converted to relative error estimates

on completion of the Integation.

The distribution of integrand evaluation points is found

by successive subdivision of the Interval Eab) . As each

subdivision In made, the change In the estimate for the interal

is examined in the light of either (4.2) or (4.4) and a doei4:on

made regarding further subdivision.

NKaeenanle original scheme was based on the 3 point

Simpson rule. Denoting the estimate obtained by applying

this rule over the whole interval by 81(aeb-a)# wheres

where the notation is defined by,

a; (x,4xr) % r f(z) +. 4s(z'..ax/2) + t(x~zrIZ (4 6

where AXr depends on the level sabdivision, with Ax, being

the same as (b-a). MaKeeman's subdivision logic was based on dividing

each interval into 3 sub-intervals. For the first Interval, ta,b1,

_ _

the estimate after subdivision is gven by,

7

~1~(a) I- Vf(a+4x 1 /6) + 2f (ai..zj/3) i- 4f (a4&ax 1/2)

+ 2f (a*- 2Ax/3) +* 4f(a * 5zi/6) +f(a+ az1)

a • • (4.7)

52-~ (AAX) + 3S-(a1ax29cx2) 1- 32(a. 2A&,.',2) (4.8)

where
Axr a (ba)/3 . (4.9)

ConaiderinS the first subdivision, if Is 1(aA 1) S1 (a, Ax1

is greater than some chosen criterion# thon the subdivision process

continues by di vIding each of the intervals (a, a'.x 2 9 [a+ &za a 4. 2AxaI

+ 2= 20a +34Z2 infl the same manner as described above for the first

subdivision, The criterion applied at each level of subdivision

depends on 4 xr. Mckeoman used the criterion P-/3r ' l where

F_ is the absolute error requirement (4.2). In his scheme

subdivision continued if,

BSr(ZIAr BzAx r-), (> E/9r- (4-10)

Lynee. sugge ted several modifications to this logc: those

that have been Implemented in the 1R1 algorithm are described below.

[(i) Zach interval Is bi-sected rather than tri-sectedo

C the estimate after subdivision of the Interval CXSXucl.

s'-(x,~ ~ Alt j(x jAzr/) + f(x r)

(1.11)

whore

Axr % (b-a)12r ' •

EJJ Equation (.10) Is replaced by

e(lx -(.zl > 'Eir-
whore 0O is a constant, do~lmd below,

) (1) After the subdiviaon process I cOalete extrapolation

in used to provide a nore accurate estimate of the Integral

and to estimate the error,

2he question of extrapolation was first considered by Lynss 17

and more complete analyses were presented by Osborn to who

derived a Sonerel-sod Ruler Maclaurin oxpanxion for the error

assoc.ated with a somerical ltegration formula. As siml4fod by

Robinson' the remults and implications tor the present scheme

are described below.

Let % be an n point quadrature am defined byg

wheroeh(b-a) and 0 Sf 1,GI ' " f l4 :5 1 and the A are

poAstlvo woihkts that are indepondeut of f and h, It the function f

is oontinuous and has continuous derivitave of auffilonty high

order, then it can be shown (Osborn@11) that

I(ab) fk(x),,b -- .1hk[f'I(b) - g"(a]. (h11)

The coefficient rk'l is the first non sero term in the erjie0

do fied by

-a -.. jL (4.16)

with 1.

For the 3 point Simpson rule, 31:0, Z- 53-1, A1 1/6,

1

A2%5 (/,A %16an h.irtnnzr ?)SY gvnb

so that

end

This result i. true for integraton over any laterval,.e.,

i[o'x S Ar-[&(7 ~ ~ ~ ~ ~ x (Zzdr)8xh r8(Xz.z)-(ezrI14(') (.2)

If the interval Cx,ZaAx s accepted by the subdivision lo4c,

S;(x,r) i" be the tor representin.6 the itepal over

that interval. The final result will be the am of such integrals*

The termst () - 3(zs zr) ham already been computed for applicatoi

in equation (4.13) and can be used to return an eztrapolated estimate

via equation (4.21). This estimate will have an error ot order

Axr. Lynes argued that the oriinal acceptance criterion is

conservative if extrapolation Is used and recosmended that (4.13)

be applied with CO19 1, hoe second term on the R.E.8. of equation

(4 21) in taken an the error estimate for that interval, fhe

error estimate for the whole Integral is then

eat - -

Note that if the a= in equation (4*22) is nade as the intervals

are accepted the extrapolation can be mad, once -only, to the final

result rather than when each interval is accepted.

, U

4*.*2. Implementation (sin&*e into aration)

The adaptive integration algorithm coded in 111 in

based on the adaptive 3 point Simpson algorithm described above.

Several modifications to the algorithm have, however# boen

Ii _______________Implemented_________

(i) ftecification of nodes for initial subdivIsion

Some of the integrand functions are defined by sequnces

of ordered pairs of argument sad function vaues. 2he interpolation

algorithms do not necessarily result in continuous 3rd ad 4th

derivatives, meaning that the error analysis and extrapolation

arguments presented in the previous section do not strictlyI apply. Daring the development of the 139 progran, it was observed
that one of the reasons for failure of the Integration algorithm

ws Interference between the Intervals set by the ordered pairs

defining the integz'and and those created by the subdivision

log:Lc used by the integration algorithm.

To circumvent this difficulty, an Initial set of Intervals

can be specified before entry into the adaptiLve Integration

algorithm; I.e.,p the interva Ca# b) Is divided by zi, In 1.... a,

where x I ap Z r 11L b and a eA zic xi* 1:1bb Bach Interval zx.1

Is Integrated separately so that the specified nodes appear as

idividual end points for the adaptive Integration. Over each

Interval, the into grand Is &asmed to have continuous derivatives

up to 4th order, The overall Integral is given by,

1H~)(-3

Lai 1

If each Integration has. an error ay~ then the total
ero in given by$

E I f&s~j4LIjAbu

Ul) ltegrtio iitim subdvisin intrval

!he h interval in thisbndd t eracete enitiatesgs

2rpzid rue ZU

T11

*(tj+ tz)f fL. 1 (g. 28)U

Vz1z*-1 V) ?2 .~f) -f(&J+()3

000z (4,)29) 3

Using these two estimates, the extrapolation for the interval in

given by,

II

+ (4-.3o)

= s;(ZAX. ,. 1) -, .(h4) • (4.31)

2ho extrapolation from the two trapezoidal estimates to the

asem as a 3 point " son integration over the interval. Equation

(4.31) vouldsof course, be applied 4 iectl . Koweverg the sequence

adopted above yields via the tem 2 -

a measure of the error associated with the Simpson integration

and a means for determining whether the Interval requies the

full adaptive integratioa. If,

TPI !(1 1-m,) - V :~,-

-4 tab's (z+ - zi)/(,,sa) (.*32)

the Iitial integration In aocepted for the Intervalk'i1
If the Integration Is accepted, the L..S. of equation (4.,32)

Is taken as the estimate of the error, E.,

An interval for which (4.32) In not satisfied Is integrated

by the adaptive 3 point Simpson a.lorithn, n this case, the

error e ,s cal ulated via equation (4,.22).

The overall subdivision sequence is shown schematically

In iguLre 4. 1, Note that the inAtial subdivisioa nodes are

obtained from a specified set which encompasses the interval

raeb). Tko eode in the adaptive Integration routines Lsoes

a wamnS ift this ts not so.

160

Spec;f.d' - . - . -;ad
Modes

I I
I, . X i

Iq .hian,"Q Sub-iAsonl L i , ,

Nodes . + I b

Extrapolate 4

Jr k
I/'- .,,L., .

S Invp t. Ia n
S;,A?0. r.t, r+;i,n SV(X,:, xz.,. -x).

etc.

Figure 4.1. Schematic representation of the overall adaptive

integration process. The points denoted by vertical 1
bars are locations of integrand values that are
available from previous steps. Circled points indicate
new integrand evaluations. The subdivision logic

within the Simpson algorithm is detailed sore fully
in Figure 4.2.

I - n--

t. subdivision sequence within the adaptive "impson

alpritha is shown In more detail In Figure 4.2. The "broken lines

enclose the turms which are evaluated for a given subdivision.

New function evaluations are indicated by the circles while the

function evaluations that have been made at a previous level of

subdivision are Indicated by the vertical lines, The symbols

for the integration appros imation& are those. defixed by equations

(4.6) and (4011) with the dependence on x and mr iotted. Note

that the adaptive Integration is now performed over the Interval

CIV, Ar3 so that

(1i) lative EInor Criterion

In practice, the absolute error criterion, Lbee is

replaced by the relative error eiterion defined by equation (4.3).

Mhe logic described In the previous sections then applies it

Labs is replaced by the 3R.1.. of equation (4.4), (*ynesg).

The adaptive Integration algorithm coded here can accept two

error criteria, Labs and %m c eAiterioa (L or Labs) In

equations (4*. (4,2) and (4J32) awe replaced by ! where
b

m ax[' " () " (4.34)
ma(abasolfj b(Zjt44.

meaning that the weaker of the two conditions Is tako.

fte absolute criterion is used only when a jivenj algrithm In being ued to evaluate an inner Integration of

a multiple Integration and can not be set explieitly.

A

I 4 bI l .. bds,.

3S.

53SIC
St Is 4 &X2..5 nx1/

, 9z I

Ax II ax
E1 E 4 S !I 3rd Su&..- %b4 $v. %

S~ ,*

Figure 4.2. Schematic representation of the sequence of

subdivisions made by the adaptive Simpson integration

algorithm. At each level, the circled points

indicate now inte6rand evaluations for that level.

As already mentioned, the integral term In (4.34) Is

known only approximately during the adaptive Integration. The

estimate In updated continuously. Am initial estimate Is made

after the lntegrations over the Initial subdivisions have been

ampleted, 1.e6 .

b U-1T1(x) I dx =

The code ensures that a a 3 so that at least 9 interand

evluatione are used to sake the initial estimate. If in uffleent

initial subdivision nodes are specified then 5 equally spaced nodes

are automatically generated.

It the estimate in equation (4-3,) is nuo eially insignificant,

(<10 .3) the integral is assumed to be nero and no further

calculations are &&de.

(iv) Adative subdivIsio I*#".

hzominatloa of Figure, 42 reveals that failure to satisfy

condition (4.23) for any Interval neoessitates subdivision to

generate 2 new intervals involviag 4 new integrand evaluatioss.

Toliag the subdivision resulting trom the failure of

S 3 and S5 to satisfy (I23) for the interval A,,, two ,ew

Intervals of length Ax 2 are Senerated

In the process of generating 32 for each interval,

the estimates 3 are also generated. B.ther of the two
3

AiZ intervals nay fail to satisfy (4.23): the particular

interval in subdivided again. The process s continued until,

generally, (4-23) ins atisafied. If, at any level, both Intervals

fail to satisfy (4.23), then the Interval for which the difference

between SE and SE is the greater Is subdivided first, The
3 3

other interval remains an a canditate for subdivision at a

later stage.

Subdivision cannot continue indefinitely. In the 533?

algorithms subdivision ceases whon r reaches a specified manum

level (selected by the user). Space allocation within theSintegration code limits -this maximum to 30, so that the mallest

Interval will be (zi4 -X)/229 = (xA4-xA) i 1.86 1-9.

In practice, the precision of the computer Imposes a limit to
I,

the possible level of subdivision. Lyness detected problems

arising from numerical roundoff by examining the sequence of

estimates, Sr for a given interval. Departure from a monotonic

approach to a lin-t was taken an an indication of roundoff errors.

In the present alsorithm, subdivision ceases when

zr (b - a K10O" (4.36)

The decisions made during the adaptive subdivision follow the

logic shown In Figure 4 .*.

5tart wA T33

20

E 4fIMWTo T0w.

Figure~~~ ~ ~ %..L11eocae ihte ~d~so poesi h
adapti ewmsnagrtm

The evaluation of a single Integral is controlled by the

function sub-pro.ran ADAPT2. This function is the lowest in a hierarchy

of three functions, ADAPTO, ADAPTI and ADAPT2 designed to evaluate

multiple integrals. In principle, each could be used for a single

integration, but ADAPT2 involves the least additional code and,

therefore, superfluous computation.,

These 'main routines$ are supported by the following subroutimes.

ADAST sets up constants used by the three functions and

initialie@ pameters which depend on the desired error

criteriono (Note that the same error criterion Is used by

all three intergratIng functions.)

ERBOUT writes error or warning messages as triggered by

any of the three main routines.

lUST (and entry points INFL1, INFL32 and INFSUP) together

with 1NF IT write data regarding the overall evaluation

of an Integral.

Only ADAMT, ROUT and ADAPt2 will be described In this

section. The remaining functions and subroutines will be described

following the discussion of the techniques used for multiple Integration. :

Zach of the integrating functions assumes that a suitable

Integrand function is available. The nane of this function is

passed as a parameter to the integrating function.

Fli.

For example, suppose the adaptive integration function

ADAPTZ is to be used to evaluateI-,
(1,) z 2 dx (437)

A function sub-progrm SQRX(X) supplies the square of X. The

essential code to evaluate the integral in;

EZXTRRNAL SQRX; Identify SQRX as a function to be passed as
a parameter.

CALL ADASZT(.001); Set the relative error criterion to .001.

ANS= ADAT2(Sq,1.0,5.0,DU,O, 'SQRX', 'X',1.0,EBOR)

The parameters in the call are identified below. The value of the

integral is returned as the value of the function and the error

estimate (absolute). Essential information regarding

the progress of the integral and final counts of function

evaluations will be sent, via the subroutine PROMPT, to

the control terminal and to log.cal unit number 4.

I

II FUNCTION ADAP?2 (1, IIN 1 ,D(AZI, I , P FINTG, VAP.EA34, POTR, E R)

Function

ADAP!2 return.an the value of the function, the integral

I(ab) = f(x)dz.

a

The function ADAPT2 is configured to operate as either a single

integration algorithm or the innermost integration of a multiple

integration alPrIthin.

Rareneter List

\ F~: FunctiLon defining the iLntegrad f(x). *.

MUNI: lower limift of integration, a.

XKAXls Upper imi t of iLntegratiLon, b.

PI: Array conta1 ning possile boundalees for iLtial

subdivisionso

NPI: Number of values in Xlo. Xf NPI is greater than 2 the

values in XPI must enempass X4IN1 and XOLXI. If PIl is less

than 3# ADAPT2 sets up five equallyr spaed nodes for

the initial subdivisloa.

FXINT1 Five character string identifying the integrand

VARNAK: Five character string identifying the Ltegration

variable.

FCTR: Factor by which the integration s to by multiplied by

to form the Integrand for the next level of integration.

For a single integration FAOTRaI.O.

MRSOR: Returned value of the error estimate multiplied by FCTR.

Control Parameters Stored In Comon

The following variables exercise control over the

adaptive integation algorithm.

NVULX : (in 11O2) Sets the maximum number of intepand

evaluations to be used in any single integration stop.

MAY.3V: (in 11OR2) Sets tAhe maxmum level of subdivision

K" (i.e. max value of r) used by the adaptive Simpson

algorithm,

Operation

Tke function LDAPT2 consists of two main sections. The first

sets up the initial subdivisions according to the nodes stored

in X1. The initial integrations are then made, as described in Section

4. 1.2 part (1)# ad outlined schematicaly in F ire 4. 1, ,

fte seond section performs the adaptive Simpson integration

according to the logic described in Sections 4.1.1 and 4.1.2 part (iv).

this function is largely free of code asociated with the

interfacing for multiple integration. fhe essentlal section of

such code is at the beginning of the function. If either outer

Integration function (ADAPTO or ADAPT) is currently active, an

absolute error criterion is calculated (so Section 4.194).

Ihe three adaptive Integration functions are the largest

-,,,,11 il~l s ummmm -,.......

/70

sub-pro-ams in the EP computer program. It is not practical

to detail the operation of the FORTAN cod* more than has already

been done in Sectioas 14.1. and 4.1.2. A complete list of variables

appearing in the code is given Table 4 .1. This should assist

the proranmer to relate the code to the mathematical description.

Note that major statement numbers have been Included in Figure. 4.3.

Figure 4.4. shows the major program variables assocated with

obtaining the Simpson rule integration estimates for the subdivisLons.

The storage of inteogand evaluations is described schematically

In Fi ure i.5.

Note that Table 4.1. does not list variables In ADAPTO and

ADAPTI that are associated with the aecumulation of error terms
for multiple Integrations. Bone variables and common block* end
with a number (0, 1 or 2). In the table these names end ith 2;

similar descriptions apply for variables or eomnon blocs ending

with the other numbers.

L1

/7/

SuMI. (sS.)

E5Ts,x± (523) EsuT. c .)
I I 1sf SbUMI (4)

i ,7"= 3 Q D"SI 0 0, I 0/ I 0 I 24~~jmv

EsT(,3) EST(2.13) EST(3,3) E ST(4 ,3)

DI DX1

~" * I I I. bdvsa.

I 3 I I

I" I I
E STCr IE sr(%.,T) ESTS= E ST(4,T)

Figure 4.4. Program variables and arrays associated with the

integration estimates. This figure should be sudied
in conjunction with Figure 4.2.

t /72

-- I I IYLOW()

0 /
\×, / I

I \/ ,I / " / I
I \

\\\ ~\ / " /I

I I

-_IT Y A. "

y)wa ,1 /' O(r / 2-Y 6

Figure 4. F. Program variables and array names associated with
the storage of integrand values used to makeo
estimates of the integrations over a J'th level
subdivision. Now values are stored in the Y(IJ)
array. Existing values are stored in the YLOW,

fl4ID and THIGH arrays and the variables Y1 and Y2.
These values are linked to Y(I,J) values at Previous
levels as shown. (The level for each existing value
is indicated on the right hand side of the diagram.

\.IN_______" _____

°I

173

Table 4. 1.

Variables Used in the Adaptive

Integration Functious - ADAPTO,

ADAPT1 and ADAPZ

AEWT(i) Local Logical flag indicating, it true, that
tke aJpatrvan3.,x,. ., requires adaptiveintegration."""

AB Lomal Ourrent estimate of the overall integral,
ASal a(ab).

BIT Local O. 2 Axr aL .25%D11.
C4D3 ADACOM 4/3, set by ADASIT.
CURiO TISTIN Logical flagg If true ADAPTO is performLa

an outer Integration,
CURI1 TSTIN Logical f lag; if true ADAPT1 is perforain.

a eater integration.
DUN Local Thauy varsiblle, used for unwanted

parameter In call to HIMG

DXz Local

DXR Local. (x)/(b-a).
1(J) ADACOM 15/2**(J-2); (1)=1. For use in applying

equation (4.13).
EPS ADACON E-roll relative error criterion.

PBAB Local a absolute error criteron.

WSANT Local -abs(z,)-.)/(b-a) , i.e. RKS of (4.32).

APSIN Local E .,-z)/(-a), for computing
relatVIe equivalent of M of (4..32).

ZRILoca gr(zs.zr) - 8r(xz,.) for-the first
interval of a new subdivision.

332 Local As above for second Interval.
33T 111032 Abbolute error estimate returned

by the function. eed by uIM in
computing relative error.ZFnIU Local Maximum value of WRAP(i).

Raw03 Parameter Z eRWA'C3. Returned to calling code.

" I

Vm m m i e lS , m . .

Table 4. 1. Continued

Ems Ja oss~.Unu

3S1(KqJ) Local r4"(x, z 2) values for the r'th

subdivi ion. (r*1.J). See figure 4.4.

LoTv() Lcal I xi, xi).

Local Irror estimate for adaptive integration
over the interval tzx 1 l).(4 ±_ in
equation (4.-24).)

F Paraeter Fuanction of X, Integrand funceion.
FC2 Local Factor for error term in ulUtiple

integantion Interac ntg. See Section

4. 1.3*

FING Paraneter Five character striAng identifying
the Intoegrand.

FIRM 1TIN Five character string identifyingthe intogranzd for ADAMO*

FXI T]LZM Five character string identiLfying
the integrand for ADAPT1.

I Local Index, Identifying z1 .

1F11 Local Integer, identifying error condition. t

I1AX Local Identifies Interval 1z, X LI] having

largest value of IRTfAP(i).

ZIP Local Indicates sequence for treating initial
intervals for further processing IUPuO,
increlasing I,; PI, decreasing 1.

J 11FOR2 Current level of subdiviaion. J - r,1.

JOFFi Local Offset used for Y1. See figure 4.5.

Jom Lomal Offset used for 12. See figure 4..

KOfmJ) Local Indicates which interval at the J'th
level is being subdivided. KOFF(J),.0,
lower interval; KOFF(J)u2, upper.

KOuEr(j) Local Ibaber of intervals at the J th level
that have been processed.

LDIA XIFO 2 Maximu level reached during adaptive
integration.

HAT V Local Maximum subdivision level, as dictated
by storage allocation. Currently 30.

NANaNV IIFO11 Maiau subdivision level, as set by
user. Overwritten it greater than MAXMV.

q1I

175-

Table 4. 1. Continued

NAXPOD Loma Njavl.m number of Initial subdivision
nodes am dictated by storage. Currently
500

11P ADAM2 Nlumber of Initial subdivision nodes,
as set by the algrithu.

1PI Parameter Number of nodes in XPI from ubdch
Initial subdivision nodes eam be selecte.jVALS flO1"2 Current number of function evaluations.

NWAX I702 Maximu number of function evaluations
for a given call to ADAPT (0,1 or 2),

Oal nt by unr.

OVR Local Logical flag if true then the function
is evaluating an outer intogr a on.

33 ADACMO 1/3.
312 ADACOM 1/12.

212DKI Loca &zr/12 (zx)/ 1/.
Bul Local Sr(zz,) for the or intorval at the5 r

J'th lovel. See figure 4.4.
5M2 Local 8;(Kz.Az) for the upper iaterval at the

J't level. See figure 4 ..
IZST Local I* R1 of equation (4.32), trapezoidal

Integration*.
2. 31S of equation (4.13), adaptive

Simpson integrations.

TRITAB Local Intogral term in (4.34). (latest
estimate,

ST1 Local UiS of equation (4.34).
T2SO TISTIN asteor used In computing absolute

error criterion from ADAMO integration,
(See Sectioa 4.1.3.)

TUMIl TUTX Pastor used in ooaput:ng absolute
error criterion from AMAPT1 integratoa.

TAlLocal I

TRAP2 LocalI
•~~X a, tea I'(,z-).

VAEO TISTIN Character string Identifnag the
Integration variable for ADAPTO,

VAENl Tuu S Charaeter string Identityiag the
Integration variable for ADAPTI.

VARIAN Parameter 5 Character string ideatifiAg the
integration variable for the current

_________ __________ Integral,
j at~

-- a-

Table I. I. Continued

so Locatio SiMRni ca e

VARD1 Local Dumy variable used to pass naumerial

data to JU2T.
VAR02 Local As above.

Zi Lomal Low point of current Interval being
processed by the adaptive Simpson
Integation. XI MzJL"

XCURO NSUTIN Current value of the integation
Variable for ADAPTO.

XCURI CTSfIN Current value of the InteSratioz
variable for ADA I1.

xINT Local (b-a).
XL(J) ADACOM 1/2 r -' or , used to calculate

,XLOW(J) Local Current x location of the low end
of the Interval. at the J'th level.
ae figure 44

ZMAX Local Internal value of b.
x11.*1 Parameter Value of b passed Into function.
)MuN Lomal Internal value of a.
XP MX ADACK2 Nodal. values for Initial subdivision,

an set within the function.
Pl: Parmeter Nodal values from whih the nodes lor

InitiLal subdivision eam be seeted.

OO Local Values of the inteprand function at
the J'tk level (4 values). See Aine

11 Local Iatepand value ret:Leved from previous

level. Be* Ftsregu .5.
Y2 Local An above.

MIGX(J) Local Intepand value at the high end of
the Jth level Interval, see figure 4 .5.

UA.0(J) Loal Integrand value at the low end of
the O'th level Interval, see figure 4.5

131(I) ADACQ2 Intesrand value at
DXaD(J) Local Inteprand value at the middle of the

J'th level iatervalt, see figure
11(I) ADA@I2 Intespand value at zA.

..j _ _.... _•e

Ii

/77

SUBROUTINE ADASET(EPS1)

Function

Subroutine ADASET initialises the constants and parameters

used by the adaptive integration routines, ADAPTO, ADAPTI and

ADAPT2. These constants are either fixed for the duration of

all the calculations performed by the integration routines or

are such that ADASET simply defines appropriate initial

values.

Parameter List

EPSI: Relative error criterion to be used by the adaptive

integration algorithms.

Operation

The variables which remain fixed are stored in the COMMON

block ADACOM and are given the values defined below.

XL(1): (Interval length array); 1.0

XL(J): (Interval.length array; 1.0/2 for J 2 tO 30.

E(1): (Error test scale array); 15.0.

E(J): (Error test scale array); 15.0/2J- for J = 2 to J - 30.

R3; 1/3.

R12; 1/12.

C403; 4/3.

EPS: (Relative error criterion); that stored in EPSi.

Variables that are given initial values are stored in the

COMMON block TESTIN and are given the following values.

TESTIO: (Error test factor for ADAPTO); 0.0.

TESTI13 (Error test factor for ADAPT1); 0.0.

> I
*1. ..1_ L . .

XCIIR: (Curent vau fo th aruet f DPO;0 *

XCUR1: (Current value for the argument of ADAPTO); 0.0.

CURRO: (ADAPTO active flag); false.

CURRI: (ADAPT1 active flag); false.

...1 ..

/7

SUBROUTINE ERROUT(NOADPTIFIN,FINTGVARNAM,VARO1,VARO2,XP,YP,YM,NP)

Function

ERROUT constructs appropriate error messages according to

the value of the termination flag, IFIN. The message contains

information stored in the remaining parameters in the call.

Parameter List

NOADPT: The number of tha adaptive integration calling ERROUT.

(e.g. for ADAPT1, NOADPT-1.)

IFIN: Termination code. (See definitions in 'operation'

below.)

FINTG: 5 character text string identifying the integrand

function.

VARNAM: 5 character text string identifying the integration

variable.

VARO: First numerical value to appear in the error message.

VARO2: Second numerical value to appear in the message.

XP: Array of nodal values of the integration variable.

YP: Array of nodal v~lues of the integrand.

YM: Array of integrand values at points midway between the

nodes.

NP: The number of nodes in XP.

Operation

The message consists of two parts. The first part

identifies the adaptive integration routine in which the error

has occured and the status of any other routines that are

currently active. The second part displays information that is

relevant for the particular error that has been detected.I-

The first line in the first part of the error message has the

form,

"**** ERROR IN ADAPT* USING *** OVER *****

where the parameters NOADPT, FINTG and VARNAM are used to fill

the gaps in the message appropriately. If the integration is

an inner integration, two more lines may appear. These have

the form,

'ADAPT*; *****; ***** -

and identify the sta'tus of the outer levels of integration.

For example, an error in ADAPT2 while under the control of

FBET, could produce the following message.

***** ERROR IN ADAPT2 USING FALP OVER ALPHA

ADAPTi; FBET; BETA - 2500

ADAPTO; FRLTO; A - 0.56

The second part of the error message is constructed
according to the type of error that has been detected and is set
by the value of IFIN as described below.

(i) IFIN - I

The space allocated in the adaptive integration

routine for the storage of nodal values of the

integration variable has bedn exceeded. (Currently 50

nodal values are provided for.) The message transmitted

is,

'NODAL STORAGE LIMIT OF **** EXCEEDED'

where VAR01 provides the number of storage locations

available in the adaptive integration routine. The

error is fatal and the program is terminated.

The groups of stars, other than that at the beginning

of the messeage indicate numbers or strings inserted

at the time the messeage is created.

dM

(ii) IFIN - 2

The lower limit of integration is greater than any

node. Because the node sequence is used to vignet the

integration interval, this condition probab|j

amounts to an error in the code calling the adaptive

integration routine.

The error message is,

'XMIN (****) GREATER THAN LARGEST NODE'

where the value of the lower limit is provided by VAROI.

The error is fatal and the program is terminated.

(iii) IFIN - 3

The limit for the number of integrand function

evaluations allowed for a given integration have been

exceeded. The error message is

"**** FUNCTION EVALUATIONS EXCEEDED'

j where the limit for the number of function evaluations

is provided by VAROl.

This error message is followed by dumps of the

contents of the XP, YP and YM arrays. (The format of

these dumps is dictated by the subroutine ARROUT.)

The error is fatal only after 10 Occurrences.

(iv) IFIN - 4

The error estimate made by the adaptive integration

routine is larger than the relative error criterion

uspecified. The error message is

'ERROR (*****) GREATER THAN REQUESTED (****)°

where the error estimate and the specified error are

provided by VAROI and VARO2 respectively.

I

All A 6F FHS NfRf A COMPUTER PROGRAM FOR TFE NUMERICAL EVALUATION '/7
Of RELIABILITV FUN..tL) AERONAUTICAL RESEARCH LABS
MRFIOURN lAUSTRAtIAI G D MAttINSON ET AL. SEP 83(Jf(I AY,'l I I) AR[/SIRuC" 3q7 Fl/G q/12 Nt

FmhmmmhmmmmmmiME-

111113 12

1-26 f

The error is non fatal and control is returned to the

calling code.

(v) IFIN - 5

The upper limit of integration is less than any node.

This error is similar to IFIN - 2 above.

(vi) IFIN - 6

Subdivision of the integration domain has been

limited. The subdivision strategy used by the adaptive

integration routines is limited by either a

specification for the number of subdivision levels or

by the effects of roundoff errors. The error message

is,

'SUBDIVISION LMITED X - ** LEVEL *

where the value of X and the level at which the

subdivision stopped are provided by VARO1 and VAR02

respectively.

The error is not fatal.

S

4.1.3. HultILoe inteoation error oonsiderations

Neglecting time dependence, the reliability functions

evaluated by 3311 have the most general foz,

s 11(s) x1(7,Z)

Thin expres ion cam be deeompoaed as the following nested

integration sequence;

a= I Is(s) ds 9 (4.39)
s1

I (S) a mF(s) (y) I , s)dy, (4.40)

Iy(Y) =](7. *) 1P (Z7Y 5) 4Z . (4.41)

The multiple Integration ean, in principle, be handled by a

recursive sequenoe of calls to the same angle integration

algorithm. IORTAS doom not peit reoursive calls to sub-prograns,

but thes sa atruoturo can be established by having 3 copies of

the same integration function, each controlling a given level
of integratLono larly versions of the M H computer proSrs did.,
in fact have this structure. the three functions ADAPTO, ADAPTI
and ADAM2 were oxact copies of each other and each level of

integration was ontrolled to the same relative orror criterion.

(As the following argument will coaclude, this approaah led
to a wasteful (if not aoeurat). Integration algorith for multiple
Integral&s Oonsiderablo improvement In computational efficiency[could be obtained if attention was given to the interfacing betweoa
the Individual single integration Algorithms to form a multiple

[integration .quence.

Consider the outermost integration,

R- I z(slds I I(s 1932) (. 1

sI

and forget)for the time being,that the evaluation of I (z)

involves further applications of the Integration algorithm.

Instead regard the numerical evaluation of I() as a process

which returns an approximate value which in vithin a controlled

eoro boundof the correct result.

Genrally, the result riturned by the Integration

algorithm in in error; InC(S2) Is retured where,

I a (sIs2) = I(S 9%) + Le (4..43)

and Eact Is the actual error Incurred during the numerical

Integration.

aresallyn , at Is bouded In some way by the safeguards

In the algorithAm,

E14 being a numerial parameter of the algorithm which

is doened to be 'reliable' It equation (4.44) aplies to

every result produced by the Integration. In any practical

algorithm there are several sources of error:

(1) truncation errors associated ith the Integration rule;

(1) errors In the evaluation of the Lntegrand function;

U11i) wound-off errors caused by the flaite precision of the

ompute occurring at each arith Le operatioa

(.v) non-systematde errors resulting from failure of the

Integration algorithm's logic to op* with unusual

properties of the ±ltegrand.

Of these oontibutions, the first two will be assumed

to be dominant. The third oontribution is important it high

levels of acua racy are required. Normallys the relab.lity

functions evaluated by NEW ae required to an aecura y of

.01% to B 1o Round-off errors associated with eight figure operations

are aseumed to be at last an order of malgitude below this level.

Non-sytematie errors are ezpected to be gros La nature and

detectable by the algorithm itself or obvious from discontin uties

in the computed functions. Cortsinly this has been so for the

errors that have been detected to date.

the seond eontribution eam be represented by writing,

where I m to the lntepand function returned by the numerieal

evaluation proeedure and E (s) ia the aetual error ass eiated

with a particular evaluation* Srors assciated with the Integration

rule ean be lumped together as an additive error S. whioh

wll, In generel, be snaltivw to ehnges Ia Is(s) aad henee

will depend on the nmerieel estimate* supUlied by the intopand

evaluation alpgrithm. Sis malneeity will be Igoored so

that the ameneal vaue returmed IW the overall Iategration

algopr thm en be represented by,

Ii

IR(5IOS) 2 12 ((z)+, (2)) dz~ +. Ok 146)
z!

The aotual error is given by,

act E(dn (4.4)

JZ1n

It Is essential for the reliability of the Integation procedure

that,

Now#
Z2 S

by the mean value theorem. z nzin the maximum of GZZ

over Ez9s1 .) Without more Information regarding the nature

of the function Ez(z), (4.49) represents an estimate for the

upper bound for the magdtude of the error resulting from the

evaluation of the Integpad funotion.

Assume nowt that the Intepalion rule ansure that

and the Intepand is evaluated withis an absolute jl
error ulterlon, EL ovorned .by

1

(4-30)

Thong

z2
acn SLt I E 7(Z)ds + (kal

9- Zl'(z2-, l z " I ,E

in . (4,31)

If, on the other hand, reoative error criteria are used,

" fa e (4. 3. 2)

and

then

- 1

EqtuatiLon (li..5a) La the :Juatitioat~on for usJ a neat, lntepaton

proces where eacht intepration La oontrolled by a relative error

criteriLon equa l to wrll here 1I La the number of intepraton

, FI(la.

-''-

If equation (4.°2) is retained, but (4.53) replaced by,

z <- ErI 1 (0)1 di I2'' (4.53)

Si

then,

act 2 11sz)ld Z2 E /122-2 11 ds + E.

z zI

z

Ther nay be significant section of the Interval CUxo1. fr

Which,

and (4.) represents a mozreliberal error criterion for Integrand

evaluation while still satisfying the overall error criterion.

Likewioj, if the inequality In (.57) s rversed, (4.3) epresents

the more liberal oriterion. Acorlngly, the intogrand evaluation

critetion be cones

and offers coneiderable gains in computational effiienay, but

little lose in overall accuracy over either (4.3) or (io.r5).

IMY

I BRturnag now to the situatioa where I z(z) is deflned by

equation (4.40)9 Es an dofined by equation (4.58) applies

to the evaluation of the RBS of (4.40) which includes the

function F (z) as well an an Integration over y. Assuming that

the errors associated with the evaluation of Fz(z) we insignificant

compared with those associated with the Integration then (4.58)

can be satisfied If the integration algorithm Is applies with

E abs in equation (4*34) replaced by %,ae where

'sEsbs £ rel Is(S / ds/s 2 -z I/ ll (zl.(4.59)

SimlAarly, for the Integration over z in equation (4.41)o Eabs

Ican be replaced by E w~b here

Ey,abs I-rl2Z -(oZ

Yy ab .I(.) (4.60).
Y(s)-y ()I. Z

In each case, the Integral torn Is appronmated within the algorithm

I which applies the latest estimate before each application of (4.34).

It isstressedhere that equations (4.59) and (4.60) are

* applied to derive parmeters which control the subdivision loge

as such they do not necessarily ensure that overall satisfaction

of equation (4,44) is always achieved For this reason, the

integation algorithms mast produce an estimate of % aet ack

dnaoe integration algorithm can produce an estimate of %n for

I that particular level Denoting that for the z and 7 levels

by E (y,s) andn(() respectively, the estimate for the

Ioverall error, E I

Est S ipZ a) E" I r, ,) y j(z r(Y. Z) ,X(Yr Z) t d

Sl (z)

(4.61)

sign arguments similar to those leading to equation (4.56) it can

be shown that

,-ea S 3r3. (4.62)

provided accurate estimates of the integal tezr in (4.59) end

(4.60) are applied at each stage, since this in not the ease (4.62)

can only be lntepreted *a an indication of the error maguitudso

In fact the total algorithm has proved to be ftAioently conservative

that the is no need to divide the required relativ, error by

the number of levels of integation., The same error criterion in

applied regardless of the number of Integration levels Involved.

I

4. 1.4. Imnlementation (maltnle Lntegration)

Multiple integrations are handled by the set of adaptive

integration sub programs, ADAMTO, ADAPT1 and ADAPT2 which have

been designed to be nested (e.g. equations (4.39) to (4.41)

in that order with ADAPT2 innermost. ADAPTO and ADAPT1 are

similar to ADAPT2 which was described in Section 4. 1029 especially

with respect to the evaluation of the integration at the level

the sub program is controlling. The two outer sub programs contain

additional code which provida estimates used in the application

of equations (4.39) and (4.60) in ADAPT1 and ADAPT2 respectively

and which performs the integrations neoesary to ake the error

estimate defined by equation (4.61).

The code has boon written in such a way that any of the

II Integration sub programs can be omitted from the sequence, the

only requirement being adherence to the order of nesting.

The sequence of operations to perform a multiple integration

Is illustrated schematically In Figure 4.6 which shows the flow

f of control between the three adaptive integration function sub

programs and three integrand functions FO, F1 and M2 The diagram

has been drawn according to the scheme defined in detail

in Section h. The essential elements of this scheme as

they pertain to Figure 4A ,which is a siplinication of similar

Figures appearing in Chapter 5, are de fined below.

(i) Logic flow can be either forward (top to bottom) or

reverse (bottom to top).

T ------- AQArO

TEST

p II

1

' 4 04 Pr 1.

II

FI ,,c

Figure 4.6. Schematic representation of the sequence of
operations required to perform a triple integration.

Refer to text for interpretation.

I.

(±1) Initial entry and final exit from the logic is at the

top of the diagram,

(iii) Small boxes indicate evaluatLon of the term within

the box, only when the logic flow through the box

is forward.

(iv) On completion of the evaluation in the lowermost box the

logic flow direction is reversed.

(v) Large boxes indicate the adaptive integration sub

programs which can direct logic flow in both directions,

Integration limits are enclosed in curly brackets and

are assumed to be evaluated each time thebox in entered

from above.

(Iv) Round boxes Indicate control points associated with the

evaluation of the intgrand functions. The .control points

have memory A that faverse flow is directed along the

some path an the control point was entered during the

previous forward flow, The two way arrows between the

control points ad the adaptive integration sub

programs immediately above them indicate that the

control points are themselves under the control of

that particular adaptive integration algorithm,

The broken lines and boxes (which are not part of the scheme

used in Chapter 5) indicate the calculation of the integral

estimates used for the application of equations (1.39) and (4.60).

The estimates of the integral torms in (439) and (L.60) are

stored In TESTIO and TESTI1 in the comon block TZISTIN respectively.

The acumulation of the error estimates is controlled by

the subroutine 11FINT and associated entry points INFST,

INFL21, INFLE2 and IXJSUP. For a given overall integration,

1M!ST is called by the outermost integration control routine.

Zis action sets the error estimates and the function evaluation

counters to o". During the integration, ADAPT1 and ADAP!2

call INFL21 and 12L2 respectively, at the completion of

each integration at the the level controlled by the particular

adaptive routine. INL2 Increments the count of function evaluations

made by ADAPT2 and evaluates the term F (y,).E X(yiz) which

is, in turn, fed back via ADAPT2 to the outer Integration

routines. ZMrr Increments the count of function evaluations

made by ADAPT1 and computes the term in curly brackets in equation

(4.61) by accessing information stored in the common blocks

INFORI and INFOR2.

On completion of the outermost integration, IMNT is

called to coplete the evaluation of equation (4.61) and to

construct an appropriate informative message regrding the performance

of the Integration algorithm. The total error estimate is displayed

together vth that arising only from the integration of the

error estimates made by the inner integration algorithms. The number

function (or integrand) evaluations made at each level are also

Further details of these meames are given In the sub progrem

* descrip tics which follow,

I

FUNCTION ADAPO(F D4N1I ,1XIA1, P 1, FIMT VAINAK)

Function

ADAPO returs, aas the value of the function, the Integral

(ab)4 (z)dx.

The function ADAPO Is conflgred to operate as the outermost of

a nested AmltLpl* Intopation sequenCe.

Parameter List

F: Function defining the Intepand, f(x).

mZINI: Lower limit of Intepation, a.

)UAXI8 Upper limit of Integration* b.

XPI: Array containing possible boundary values of z for

Initial. subdivisions.

APIs Number of values in XP1. If BPI is greater than 2 the

values in PI must encompass DKIlI1 and ZIAXI. If DPi Is

loe than 3# ADA TO sets up five equally spaced nodes for

the Initial subdivision.

IMT s live character string identifying the intorand.

VARNAK: FL*v character string Identifying the Integration

variable.

Control Patmeere Stored in Counma

SThe following variables exercise control over the adaptive

Integration algorithm In ADAM, 0.

NIrNZa (in1 020) Sets the SaI.mum mober of lnterand evauationaI ,

to be used In any single integration step,

MAnEV: (in IWORO) Sets the maximum level of subdivision

(i.., max level of r) used by the adaptive Simpson

algorithm.

ADAPTO operates in the same way as ADAPT2 In- a far am the

evaluation of the ntegral is concernod, Referene to the documentation

for ADAPT2 In Section 4.1.2 should be made for details of the

Integration method and Implementation, The variables used for

the Integration are defined :n Table 4.1 with the only differOene

being that those variables listed ia that Table a being located f
in comon block 111R2 are located, instead, In comon block

INFOBO.

The essential difference between ADAPTO and ADAPT2 is that

ADAM Integrates the error estimate provided by the integrand function.

the function 7 Is assumed to have two argumenta, the first Is the

value of X for which the integraad function Is required. he

second Is the error estimate returned by the Integrand function.

ADAPTO Integrates the error using the so method and the

intervals that are used for the Integration of f(x), The mbdivision

log.e is not affected by the error Integration which is not

extrapolated by the "Seapn algorithm. The code parallels that

used for the main Integration and uses the variables defined in

Table 4.2.

Variables associated with error interation,

used in ADAPTO and ADAPTI and not listed in Table 4.1.

Name Location sigificane

zEf(KJ) Local Values of the integraad error

at J'th level (4 value).
Corresponds to T(I,J),

IRMOG(J) Local frror at lg end of J'th level,
f* Corresponds tq IX(J).

ZrRWW(J) Local Errer at low end of th l eveliLnterval, Corresponds to YLOW(J).

ZB(KM Local Error at (x:L*+xi)/2.
ZFS4XD(J) Local ftror at, the miLddle of the J'lh

level Interval, Corresponds to
VaD(J).

I

I.

II

FUNCTION ADhPT1 (1, cN41, lIA l P 1 * 1i .IINZG, VARghM* FC.TNOR)

Intien

ADAPT1 retzrna, as the value of the function, the integral

I(a6b) a f(xdz.

The functIon ADIPTI In configred to operate as the .1d4G

Integration of a nested multiple Integration mquence.

As for ADP!2,

Cotrol Parmeters Stored In oot

X%=aA mid NAWZV have the me control a specified for ADAPT2. but

are stored In the onmon block I3oR01.

ADAJ1 operates In th same way an, ADIM and performa the

error lateration described for ADAPO. Te ea y additional

operation over those made by ADAPTO Is the application of equation

(#+,,9) to compute an abeolute error citerion.

Note that AVAPT2 sets en absolute error wit*Ion, via

equation (4.60). lkADIO, AlthouSk aoeomodatiag ean absolute error

a oiterlm withi.a the eodoe operates al.t a sero (I.e. zon-peratIve)e,, Y
absolute error witeon __ __ __ __ __

I

SUBROUTINE INFINT(ERREQ,NOADPTANS)

Function

Subroutine INFINT constructs a message which indicates the

error estimates and workloads associated with a given

integration. The information is provided at the completion of

the outermost of a nested integration sequence.

Parameter List

ERREQ: Relative error criterion used by the adaptive

integration algorithm.

NOADPT: The number of the adaptive integration routine

calling INFINT. (e.g. NOADPT - 1 corresponds to

ADAPT1.)

ANS: The estimate of the integration as calculated by the

adaptive integration algorithm.

Operation

The operation of INFINT depends on the number of the

adaptive integration routine for which the information is

being output. However, in all cases the main function is to

assemble the information from the relevant COMMON block and to
make elementry checks on the error estimates, producing an

appropriate warning if suspicious integrations are detected.

(i) ADAPT2

The simplest case is when INFINT is called by ADAPT2.

The integration is not nested and all the relevant

information is stored in the COMMON block INFOR2. The

error estimate, ERRES2 is converted to a relative error

if ANS is non-zero. The informative message has the

form,

'ANS - **** ERRI - **** NVALS -

where ANS, ERRI and NVALS are the numerical value of the

integration, the relative error estimate and the number

of integrand evaluations used respectively.

(ii) ADAPTI

If INFINT is called by ADAPT1, then there may be an

inner integration involving ADAPT2. The total error

estimate consists of ERRESI (in INFORi) produced by the

adaptive algorithm and ERRINI which is the total

integration of the error estimates produced by ADAPT2.
This total error estimate is computed by INFINT,

converted to a relative error estimate and then

included together with ERRINI in -a message which has the form,

'ANS - *** ERRI = *** ERR2 a *** NVALS = ***, ***"

where ERRI is the total error estimate, MW the estimate for the

integration of the inner levels and the two numbers associated with

NVAIS indicate the number of integrand evaluations associated with

ADAPTI and the combination of ADAPTI and DAPT2 respectively.

(iii) ADAPTO

If ADAPTO calls INFINT, the operations resemble

those for ADAPTI with the exception that the OrXO

estimates are provided by ERRESO and ERRINO in INFORO.

The resulting information message is similar to that

given above but with the addition of a third number

after NVALS to indicate the number of evaluations

associated with ADAPTO, ADAPTi and ADAPT2.

Note that the initialisation sequence executed by

INFST ensures that if any level of integration is

omitted, the relevant terms contributing to total

estimates are zero.

!

I

SUBROUTINE INFLEI(FACTOR,ERROR)

i Function

INFLE1 produces an error estimate associated with an

integration by ADAPTI. The subroutine is called by ADAPT1

only.

Parameter List

FACTOR: Term by which the error estimate is to factored to

produce the correct total estimate by the calling

code. (See equation (4.1..).

ERROR: Error estimate returned by INFLEl.

Operation

Following equation (4.l) the error estimate is computed

from ERRINi and ERRESi the integration error estimate and the

integrated error from inner levels of integration

respectively.

INFLEI also increments NVI, the total number of function

evaluations associated with ADAPTI.

f 1

SUBROUTINE INFLE2(FACTOR,ERROR)

Function

INFLE2 computes the error estimate for an integration

involving ADAPT2. The subroutine is called by ADAPT2 only.

Parameter List

FACTOR: Term by which the error estimate is to be factored to

produce the correct contribution to the total error

estimate for integrations using ADAPT2. (See equation
(.t. Il)).

ERROR: Error estimate produced by INFLE2.

Operation

ADAPT2 is always the innermost intgeration and the error

estimate comrises only that associated with the adaptive

integration. This estimate is stored in ERRES2.

INFLE2 also accumulates the counter NV2 which indicates the

total number of functions evaluations made by ADAPT2.

U

SUBROUTINE INFST(NOADPT,FINTG,VARNAM,XMIN,XMAX)

Function

Subroutine INFST initialises a multiple integration process

by setting to zero all error estimate terms and function

evaluation counters. The subroutirre also constructs a prompt

which identifies the integration being initialised.

Parameter List

NOADPT: The number of the integration algorithm calling INFST.

FINTG: 5 character test string identifying the integrand for

the outermost integration.

VARNAM: 5 character text string identifying the integration

variable for the outermost integration.

XMIN: lower limit of integration.

XMAX: Upper limit of integration.

Operation

The error estimate variables (ERRINi, ERRINO, ERRESO,

ERRESI and ERRES2), the function evaluation counters (NVI,

NV2, NVALSO, NVALSI and NVALS'2) and the test factors (TESTIO

and TESTII) are all set to zero.

If integration information suppression is selected no

further action is taken. Otherwise a prompt of the form

'ADAPT* USING **** FOR **** FROM **** to *"

is constructed using the information in NOADPT, FINTG, VARNAM

XMIN and XMAX.

I

Ii

I

SUBROUTINE INFSUP(LOG)

Function

Subroutine INYSUP provides the facility for optional

suppression of integration information prompts. Error

messages can not be suppressed.

Parameter List

LOG: Logical switch. If true all future information

prompts will be suppresed. If false, all future

information messages will not be suppressed.

Operation

INFSUP transfers the value of LOG to OUTSUP which is

accessed by INFST and INPINT to determine whether to construct

information prompts or not.

I

iU

4.1.3 Performance

The error analysis presented in Section 4.102 and the arpuments

in Section 4.1.3 permit the set of appropriat, convergence criteria

with the adaptive integration algorithm. The analyses are

not complete enough to provide accurate estimates of the errors

associated with a given integration, At best an order of magnitude

for the upper bound for the error can be established.

Accordingly, the integration procedure can be assessed only

by appropriate tests using known Integrations for which the

answer can be calculated via an alternative method. There

are many examples in the literature (e.g. Lyneass, Robinson)

Which demonstrate the suitability of adaptive Integration methods

for application for the evaluation of single integrals. In

particular, the adaptive procedures are effective for dealing

with improper integrals where the integrand has one or more

singularities within the domain of integration.

In the present application, the Integrands are not expected

to be singular; the main concern is achieving adequate computational

efficiency so that the cost of evaluating a multiple, integration

is not prohibitive,

The performance of the multiple aloritham is indicated by

the results In Tables 4,3 to ",. The data In each table ware

obtained by evaluating a given integral several times using different

[avalues Of Era. In each case it was poseible to Integrate analytically

s that the actual error could be evaluated. The ratio of the.

+ I

estimated error to the actual error Is a measure of the performance

of the subdivision logLi with respect to satisfying the required

error boda. This ratio must be greater than 1 and ideally as

close to I as possible. High values indicate excessive conservatisa.

The numbers MX, NY and NZ indicate the approximate numbers

of integrand evaluations for each integration over the appropriate

variable. MOT Indicates the total umber of evaluations of the

Innermost interand and# assuming an equal proportion for each

Integrand, is a measure of the total workload for the evaluation

of the Integral.

The first Integration (Table 4.3) Is typical of a peaked

Integrand with a discontinuity in one direction. The Integration

limits were calculated by the range limiting aloritha described

in Section 1$. 1 before the integrand was truncated at x. 10.

go initial subdivision nodes were specified so that 4 intervals

were used for the trapezoidal integration. Although x=10 was

a nods for the initial subdivision, the integration procedure

had to find out for Itself that p(x)a 0 over the whole of

the Interval (xyzl , (z = 10). This Is reflected by the relatively

large numben of function evaluations associated with the integrations

in the x direction.

Note, however, that reliable results were obtained with the

algorithm being more oonservgtive at the higher levels of accuracy.

This is probably eed by some interaction of numerical roundoff

with the subdivision logL. &perianea with the algorithm has

led to a general rule of thumb' that roundoff will affect the

subdivision logic if the product of the number of innermost

inteprand evaluations and the reciprocal of the relative error

requirement exceeds 10n, where a is the number of significant

figures retained by the computers Using this rule, the 0.0001

results can be expected to affected in this way.

If the same calculation is made with x2 -10 (Table 4.4) so that tie

effect of the discontinuity is moved to the integration. limit, the

workload is reduced by nearly an order of magnitude, with the

greatest improvement being at the lowest levels of accuracy.

Note that the 0.0001 result is not nearly as conservative as

the corresponding result in Table 4*.39

This time, some of the lower accuracy results are conservative.

This reflects the step changes in accuracy made by decisions

to subdivide given Intervals. Such changes can result In

Integrations involving few function evaluations being excessively

conservative.

The results in Table 4.. indicate adequate performances

for an integration which invelves further integrand functions that

are typical of thosed used to represent the density functions used

in reliability models for fatigue.

An integration involving variable Integration limits

is given in Table 4.6. Note that the Innermost Integration Is

trivial and the algorithm has reacted accordingly. Again note

the extreme conservatim at low levels of accuracy: he minimum

number of intogpand evaluations programmed into the subdivsion

logic Is more than adequate for the 0, 1 integration.

2he results tabulated bore are typical of thoe that

have been obtained for a wide range of integrations. 2hey are

not conclusive evidence of accuracy; such tests never can be.

They do however indicate that the multiple Integration alprithm

algorithm can work most effectively for F In the range 0.01

to 0.0001 on an eight figure computer, Mis in more than adequate

for the requdrenala of reliability functions based on input data

eztibiLtn muc greater sources of error.

For them levels of accuracy approximately 25-30 intorand

evaluations an be expected for each integration over one of the

variables of integration. Numbers around 100 indicate a discontinuity

In the inteprand which should be removed by redefining the limits

of integration. (This aceouts for the attention Siven to

integration limits in the relLability modelling.) Larger numbers

of inteprand evaluations indicate, either several disconti ualties

in the Integrand functlon, or some other problem Thich causes

an excessive demand for interval subdivuiAon.

an1

I

Er Answert/ac N NY NI NTOTre returned (relo) ac

(rod.) I

.1 .5017 .00313 0.92 21 19 87 35383

.01 .30133 .00301 1.13 21 21 103 43W3

.001 .300o048 .000093 9.6 33 27 113 101313

.0001 .000037 .000092 12.4 33 28 143 132847

Table 4,3. Perfozance statistics fot

a Y . X)p Z) dzdy~ds
SlYI1 i31 V~z

for p$z) -..Lexp -A~ and p(y) and p~s) similarly defined.

AL109 €0. 1, Z1*Y1lz-9.371 and z2 = '% acz 10.631 (l1mitsIalculated by RAMR3, Section 4.4. 1). p(x)--0 for z>10.

Naz.uim subdivision level 20.

Srel retuzned (raN.)

.1 .3017 .0403 15.3 21 19 9 3684

.01 .50143 .0037 1.0 21 21 13 5733

.001 .3000043 .000103 11.6 33 27 19 16739

.ooo .3ooo1 .0000863 2.7 33 28 27 230M3

Table 4 4. Porformanoo statistics for integration defined

for table 4.3 but with Z2 10 .

/SW NZ. N S T iX NTO!

E. returned (rel.)

.1 8. 157 .053 2.89 15 15 13 3373

.01 8.00273 .0011 3.2 23 43 23 14325

.001 8.000733 .0=0823 8.72 29 28 29 23229

.0001 8.000024 .0000171 3.7 59 30 59 174u63

Table 45. performance statlstic. for the Intosratlon,

I = n ano. Ch.o" :p nomz X dz=ds

8 for n=2.

Answer Eet ' NZ NT fi MTO?
rel returned (rel.)

.1 192.7342 .0784 31 9 8 9 549

.01 192.1887 .00282 6.33 25 14 9 2907

.001 192.2677 .000068 1.98 33 19. 9 5283

.0001 192.2740 .000039 .4.9 33 23 9 7155

.00001 92.2743 .000004 63 33 9 18693

Table 4.6. Perforusace statlatose for the lt tgratioa,IE2aos ((4-r-) *
2 S.f 0 10 r3 dzdrd

L64a 5 r -26/13)/13; =192.2743 for aa2. 3

4.2. Interpolation

One of the significant features of the NERF computer program

is that input functions can be defined as sets of ordered pairs

of argument and function values. This removes a requirement

for the user to fit specific functional forms to the input data

and removes any dependency on such forms from the NERF code.

The generation of continuous functions from these sequences

of ordered pairs requires an appropriate interpolation

procedure. For several years during the development of NERF,

piecewise polynomial interpolation was used. As the

integration methods were refined and the graphical methods for

the display of the adaptive integration process developed, it

became evident that discontinuities in the derivatives of the

interpolated functions were causing an interference with the

adaptive integration logic resulting in excessive numbers of

function evaluations in some cases. Although this problem

could, to a large extent, be overcome by locking the adaptive

integration logic to the nodes used to define the input

functions, the use of splines which ensure continuity of atI least some of the derivatives proved beneficial.

Although the algorithm used to fit piecewise- polynomials to

the ordered pairs could cope with polynomials of any order,

experience showed that polynomials of order 3 and 5 produced

the most satisfactory results especially when the interpolated

function was inspected graphically. Accordingly, cubic

splines were adopted as a replacement for the piecewise

polynomial interpolation procedure.

IA

4.2.1. Mathematical Basis

The theoretical basis for spline interpolation is well

known and documented by most good texts on numerical analysis

(e.g. Ahlberg et al ref.21). A cubic splin, is the simplest spline

interpolation function and has a physical analogue in the

draftsman's spline (from which the name originated) which

consists of thin strips of wood, or similar material, used to

fit smooth curves through points on a diagram by attaching lead

weights at points along the strip and allowing the elasticity

of the wood and the effect of gravity to generated the required

distribution of curvature.

Given a sequence (xi} of M argument values for the function

f(x) the cubic spline through the points (xi,f(xi)) is

identical to the curve that the draftsman would obtain if the

points at which the lead weights were attached coincide with

the points {xi,f(xi)). The cubic spline has continuous first

and second derivatives and of all the functions having a

continuous second derivative over the interval txl,xM] the

cubic spline minimises the integral,

2d
f"(x) 2dx-

and therefore has minimum curvature. (4.63)

The cubic spline consists of a sequence of 3rd order

polynomials, one for each of the intervals [xi,xi+1] for i-l,

M-1. Denoting the cubic spline by y(x), the following notation

may be defined.

s(x) - dy/dx (4.6)

m(x) - d2 y/dx2 (4.65)

Y" Y(xj) (4.66)

Ss(xh) (4.67)' Li

M, - m(x). (4.68)

The equation defining the spline over [xi ,x i+] is

generated by assuming that the second derivative varies

linearly over the the interval, i.e.,

M(x) - mi + (m i+-m)(x-x)/hit (4.69)
where

h - ~ (4.70)

Integrating equation (4.69) yields,

s(x) m i(x-x i) + (mi+l-mO)(x-xi) 2/(2hi) + A1 (4.71)

2 +31- ~-
y(x) - m1 (x-x) 2 (ml-21 C)(x-x) /(6h

+ Ai(x-x1) + Big (4.72)

where Ai .and Bi are constants of integration which may be

evaluated by imposing the conditions y(x)=y i and

y (xil)-Yi+ll so that eventually

y(x) - Yi + (yi+l-yi)(x'xi)/hi - h (2m 1+m i+l)(x-x1)/6

4 mi (x-x) 2/2 + (mi+ -m)(x-x i) /6, (4.73)

and
2

s(x) m 1i(x-x i) + (mi+1-mi)(x-xi) /(2hi)
4 (yil-yi)/h 1 - hi(2mi+mi+i)/6. (4.74)

The second derivatives at x-x1 and x I m and m

respectively are, at this stage, unspecified. Equations (4.73)

and (4.74) are applicalbe for any cubic passing through yi and

Yi+l" The special condition leading to the cubic spline is

that the first derivative is continuous. Enforcement of this

condition leads to a set of equations that can be solved to

yield the point values of curvature, {mi}. From (4.74)

!

ipA

si a s(x19 (y1 4 1 y1)/hi - hj(2mi+mi+i)/
6 (4.75)

a+1 0 3s(xi.l) = (yi+tyi)/hi + hi(mi+2mi+)/6. (4.76)

Equation (4.76) for the interval (xi 1 9Xi] yields,

s, (yiyi1)/hi + hi 1(m 1 1 +2ml)/6.
(4,77)

Combining equations (4.75) and (4.77),

mi-.hi.i/(hi+hi..I) + 2mi + m hi+lh/(hi+hi.l)

- 6[(yi+i-yi)/hi - (y1-yi1)/hi I]/(hihi_ I
) ,

... (4.78)

which is valid for i-2,M-1. The two extra equations required

to completly specifiy {mi) are obtained by imposing conditions

on the slope of the spline at each end of the interval txlxl.

Considering the end, x-x1 , ard denoting the imposed slope by

y' 1 equation (4o75 yields

-I " (y2-y)/h - h,(2m,+m 2)/
6 (4.79)

which can be written in the form

2mI + m2 m d
(4.80)

where

dl 6[(y 2-yl)/h I - y, 1]/h.
(4.81)

Similarly, from (4.7 at i-M,

M1. + 2N - dM,
(4.82)

where

dM - 6[(yM-yM.l A)/hM - Y)] /hM (4.83)

fiL!J

I

The specification for y', and Y'M is arbitrary and may be

adjusted to meet specific requirements. The specification in

NERF amounts to a second order estimation of the slope using

the 3 data pairs at each end of the spline. For example, at

x-x 1, Taylor's expansions about x=xl, yield

(y2 -yl)/h 1 - Y I + y" 1hl/2 + o(h 1 2 (4.84)

(y3 -yl)(h 1 +h 2) - y', + y"1 (h1+h 2)/2 + o((hl+h 2)/2).

(4-85)

Elliminating y"I from these equations yields,

d I - 6[(y 3 -yl)/(hl+h 2) - (y2 -yl)hl] /h2 . (4.86)

Similarly, expansion about x-xM leads to

dM - -6 [(yM-YM.2)/(XM-XM _2) - (yM-yM_1)/hM 1] /hMl

(4.87)
The set of equations (4.78), (4.8o and (4.82) can be solved to

yield the curvatures (mi} and the cubic spline is completely

determined.

,IA

4.2.2. Implementation

Given the sequences {x i } and {yi}, the construction of a

cubic spline consists of solving equations (4.78), (4.8q and

() for mi • These solutions are obtained during an

initilisation phase and stored, together with the first order

differences,

DY i (yi+-yi)/hi (4.87)

for later use by equations (4.7) or (4.70 for evaluation of

y(x) or s(x). Slightly more efficient forms of equations (4.71)

and () can be generated by rearrangement, i.e.,

y(x) - y1 + (x-xi)yDi + (x-xi)(x-xi+l)(mi+mi+l+m(x))/6

... (4.88)

s(x) - yD + (2x-x i-xi+l)(mi+mi+l+m(x))

+ (x-xi) (x'xi+ I)(mi+l-m i)/(6hi)

(4.89)

where m(x) is given by (4.69).

The main task during initialisation is the solution of the

set of equations defining (mi}. These equations can be recast

in the form,

2mi + A11m2 - dl (4.90)

()m + 2m i + imi+l di (4.91)

M-mM_l + 2 mM - dM, (4.92)

where

*S, - hi/(hi~hi+i) (4.93)

di 0 6(yDi-yDi.) /(hi+hi+), (4.94) H
and

I ti,

I17

Al " " 1. (4.95)

(A, and A are retained as separate parameters to allow

possible modifications to the code to cope with more general

boundary conditions as described by (ref).

The set of equations thus form a 'tridiagonal' set which may

be solved by the algorithm usually attributed to Thomas (ref),

the form appropriate for the equations here being described

below.

(i) Set b1 = 2, al = d1 /2 and cl-;\1/b1 . (4.96)

(ii) For 12 to i-M-i,

b i 2- (1-X)cii, (4.97)

ci - 'i/bi, (4.98)

a, a (Ali-(1-yi)aii)/bi. (4.99)

(iii) Set bM 2-A~cMl (4.100)

and a . dM -iaml. (4.101)

(iv) For i - M-i to I-i,

a, W a i - cia 1+* (4.102)

Following these operations the values {ai} are equal to the

required solutions for {mi}.

The spline interpolation is provided by the function FINTRP

which executes the tasks of initialisation and interpolation

according to the value of a control parameter in the call. The
evaluation of the derivative function is provided by an entry

point in FINTRP called DERIV.

I.1

4.2.3. Inverse interpolation

Given a function defined by a set of ordered pairs of

function and argument and evaluated by an interpolation

procedure, an obvious approach for generating the inverse

function (e.g. x-x(y) for y(x)) is to use direct interpolation

with the sequences {xi} and (yi } interchanged. Unfortunately,

the inverse function thus generated is not an exact reciprocal

of the forward interpolation. In other words, if y I(x) denotes

the interpolated value of y(x) using {xi} and (yi) , and xI(y)

the interpolated value of x(y) using {yl} and {xi}, then

II (4.103)x (y) jA x.

This non-reciprocality (which is not precisely known) can

lead to hysteresis if repeated evaluations of the interpolated

function and the inverse are made. Such hysteresis contributed

to problems during the development of an interpolation

procedure for the loss factor where the evaluation of I-' is
required.

An alternative approach is the obtain the inverse by solving
yI(X) - y - 0 (4.104)

using the secant method described in Section 4.3. By succesive

iterations, the error in (4 .103)and hence the non-reciprocality

can be controlled to known limits. Any sensitive logic can

then be modified to cope.

if

U!

i

FUNCTION FINTRP(X,XAR,A, IMAX,ITYPE)

Function

FINTRP evaluates the interpolating function for the set of
ordered pairs of argument and function values stored in XAR and

A respectively. The current implementation uses cubic spline
interpolation.

Parameter List

X: Value of the argument for which the interpolated

function is required.

XAR: Array containing {xi}, the values of argument used to

define the function.

A: Array containing (yi, the function values used to

define the function. Note that A must be large enough
Dto store the sequences (y i} and (m .

IMAX: Number of values in each of (x1 } and (yi)
.

I ITYPE: Control parameter.

-1, or -2, The interpolating function is evaluated

using values for {yD i} and (mi) that are assumed to be

stored in A.

-3, The spline is initialised and the interpolated

value for x-X evaluated.

-4, The spline is initiailised but no evaluation of the

interpolating function is made.

Operation

The array A is assumed to be sufficiently large to store

(y i , (YDi) and {mi} for i - 1 to IMAX. During initialisation,

the first order differences are computed via equation (4'17) and
the curvature values are computed using the algorithm

described in Section 4.4.2. The code is a direct application

as a aplcaio

-3"

of this algorithm with the following equivalences between

mathematical symbols and variable names applicable.

ALO -

ALM - M

DO - d 1 ,

DM - dM ,

B(I) - bi,

C(I) - ci s

A(I +2*IMAX) ai, mit

N HI - hi,

HIM - hi 1 ,

HT - hi + hi+1.

The evaluation of the spline function at x-X follows the

same logic as that for evaluating the derivative. DERIV is, in

fact, an entry point which sets ITYPE - 5. The following

operations complete the evaluation of the interpolating

function, or the derivative according to the value of ITYPE.

(i) INDLOW is called to to find the interval containing X.

(i-IX).

(ii) If X is outside [xl,XIMAX] a warning prompt is issued.
(Iii) If X is close to one of the values of {xl}, the 3

corresponding value of {yi} is returned rather than

perform a full interpolation. Note that EPS1 is set to

a number corresponding to machine precision. If the

fl !

I

derivative is required, equations ('7r) or (.%) are

used to return a nodal value.

(iv) Equations (4'f) or (4'7) are evaluated for the

interpolating function or the derivative respectively.

Note the following equivalences between the

mathematical notation and the program varaible names.

BITX - x-xi,

RMI - mi.

RMIPI - mi+i,

SM - (Mi+1-m i)/h i s

RM - m(x).

Prompts

(i) 'CAUTION EXTRAPOLATION X - *****': The value of x is

outside the interval [xl,xM] and the interpolation is

probably being called erroneously.

I
I
I-
*

Iw

FUNCTION DERIV(X,XAR,A,IMAX)

Function

DERIV evaluates the derivative of a function definied by a

sequence of ordered pairs.

Parameter List

X: Value of x for which the derivative is required.

XAR: Sequence of values of argument defining the function.

A: Sequence of function values defining the function.

IMAX: Number of data values in XAR or A.

Operation

DERIV is an entry point in FINRP and the operatios required

for the evaluation of the derivative a described with the

documention for FINTRP.

Ii

,~ H

4.3. Solution of Equations

The limit risk inspection procedure requires the solution

of

log(r(t)) - log(rli m) (4.105)

for t. The function r(t) is given by the appropriate

expression for total risk and although defined for any value of

t, its inverse is intractable by analytical methods. Numerical

solution of (4.105) is necessitated. The secant method (ref

22) is suitably efficient and easy to apply. Moreover,

calculation of the derivative of log(r(t)) is not required.

Although the calculation of inspection times using the

limit risk criterion was the motivation for the provision of an

equation solver within the NERF program, the secant method is

also used to provide inverse interpolation for the input

functions that are described by ordered pairs and to solve the

equations associated with the proof load inspection boundary

(Section 5.6.).

fp

I

I
i, I

4.3.1. The secant method

Consider the solution of the equation

f (x)-o. (4.1o6)

Given two initial estimates for x, x I and x2, and corresponding

function values, f(xI) and f(x2), an estimate can be found by

inverse linear interpolation, i.e.,

13 - xl - (x2 - x 1).f(x 1)/(f(x 2) - f(x 1)) (4.107)

as shown schematically in Figure 4. 7 . The values of x 2 and x3

can be similarly used to yield a new estimate for the solution

of equation (4.106), leading to the recurrence relationship,

xI = xiI - (x1 - xi-1).f(xiil)/(f(xi) - f(xiil)) (4.108)
which is the basis of the secant method. Equation (4.108) can be

applied repeatedly until a suitable convergence criterion has

been satisfied. In NERF, the criterion,

If(X)I < F (4.109)
is used. The sequences of iterates produced by equation (4*1OA

can be shown (ref 22) to have good rates of convergence.

0

Figure 4. 7. Geometric basis for the secant method.

4.3.2. Implementation

The solution of equation (4.106) is controlled by the

subroutine FSOLVE which returns the solution as the value of

the function. A direct copy, FSOLV2, permits the solution

procedure to be nested.

The implementation pf the secant method in NERF has the

refinement that, following each application of equation (4.104,

it is not necessarily true that xi_ 1 is the estimate that is

discarded. Instead, the larger of x i and xi_ 1 is discarded.

This refinement allows the initial estimates to be defined in

any order and can improve initial rates of convergence.

Typically, adequate convergence (to a relative error of

10- 5 say) can be achieved in less that 10 iterations. The code

in FSOLVE flags an iterative sequence lasting more than 20

iterations as a possible error condition.

I I

ii

IFS2

FUNCTION FSOLVE(F,ARG,GIN1,GIN2,FV1,FV2,EPS)

FUNCTION FSLOV2(F,ARG,GIN1,GIN2,FV1,FV2,EPS)

Function

FSOLVE, and its direct copy FSOLV2 solves the equation

F(x) - ARG - 0

using the secant method.

Parameter List

F: Function defining F(x).

ARG: Value of F(x) for which the solution is required.

GINi: First estimate of x, xI .

GIN2: Second estimate of x, x2.

FV1: F(x1).

PV2: F(x2).

EPS: Absolute convergence criterion.

Operation

The code in FSOLVE is a direct application of the

implementation described in Section 4.3.2. Note that the added

acceptance criterion

f(xi+i) - f(xi) .

where F_ is a very small number (e.g. 10- 3 2) is also applied to

guard against the effects of roundoff errors.

Error Messages

() CONVERGENCE FAILURE IN FSOLVE': More than 20

iterations have been used. FSOLVE returns the current

estimate to the calling code.

4.4. Miscelaneous Support Functions

In addition to the three basic numerical methods of

integration, solution of equations and interpolation, the

sections of code that evaluate the reliability functions

depend on the availibility of subroutines which perform

certain support functions. These subroutines are described in

this Section.

4.4.1. Function range limiting

Some of the input functions accesses by NERF are defined for

infinite ranges of the argument. It is important, in so far as

the numerical routines are concerned, that the inifinite range

be converted to a finite range, beyond which the function is

sensibly zero.

This conversion is provided by the subroutine RANGE which,

given the range of the arguments for a function, computes a new

range if possible such that the function is greater than a

small number (currently 10- 8) over the whole of the new range.
The subroutine also finds the location of the maximum value of

the function. (This additional facility is not used by the

reliability function evaluation code.)

-.

SUBROUTINE RANGE(F,XLOW,XHIGH,XPEAK, IPEAK)

Function

Given a function, F(x), RANGE finds the limits for the

argument, x, beyond which F(x) is insignificantly small. RANGE

also locates the maximum value of F(x).

Parameter List

F: Function for which the argument limits are required.

XLOW: Specified lower limit for x from which the search for

the 'sensible' limit will commence. Returned as the

located sensible limit.

XHIGH: Specified upper limit for x, from which the search for

the sensible limit will commence. Returned as the

sensible limit.

XPEAK: Returned as the argument correposnding to the maximum

value of F(x).

IPEAK: Control parameter%

-0, RANGE does not locate the maximum value of I(x).

-0, RANGE locates the maximum value of I(x).

Operation

The search for the limits and function maximum uses a

conventional interval bisection method. The sear-, 9

controlled by three parameters which are given values

RANGE.EPS specifies the minimum value of the function us

* find the sensible limits. Currently EPS is set to 10 - 8 *._
and NLIM specifiy the numbers of interval subdivisions used to

locate the limits and maximum respectively. Currently, NZERO -

10 and NLIM 20.

II-

Prompts

(i) "** WARNING ** F(XHIGH) = ****: The value of F(x) for

the upper sensible limit is greater than EPS. This

means that either the search has failed or that the

upper limit specified during the call vignetted the

function. The latter case may be legitimate.

(ii) "** WARNING ** F(XLOW) - ***': The value of F(x) at the

lower sensible limit is greater than EPS. See (i)

above.

I

ii l

4.4.2. Index Location

Given a monotonic sequence, {xi}, of nodal values of a

variable, x, an ordering of the index i is defined. A

requirement of many of the numerical procedures used by NERF is

to locate a given value of x, Xval, in the sequence.

Defining the notion that the direction of i increasing is

movement from left to right (as would be the case if the

sequence of values were written across a page), function INDRI

finds the hiahest value of i such that x i is to the left of

X val Function INDLOW finds the lowest value of i such that x i
is to the right of x val

A refinement of this process can be made by allowing the

specification of a tolerance for the search. If 6 is such a

tolerance, then INDEI finds the highest value of i such that xi

is to the left of the interval (x va- ,x val +). INDLOW finds

the lowest value of i such that xi is to the right of the

interval (xva I - ,Xv+).

The operation of these two functions is described below.

I

73

FUNCTION INDHI(XVAL,X,N,EPS)

Function

Given that the array X contains a sequence (x i } of monotonic

increasing or decreasing values of x, then INDRI finds the

highest value of i such that xi is to the right of zval , (see

Section 4.4.2.). An error margin,C , is allowed for so that for

{x i} increasing,

INDHI -max(i : xi < xVal-

and for (xi} decreasing,

INDHI - max(i : x i > Xv+).

Parameter List

XVAL: Value of x for which the index is required.

X: Array containing {x i}.

N: Number of values in (x}.

EPS: Error tolerance, -

Operation

For (x i } both increasing and decreasing, the required index

is loctted by searching from iN to iml until the first node is

found that meets either x L<Xva l -. ((x i} increasing), or

xi>xVal +. ((xi) decreasing).

Note that if all the values in (x} are greater than x, INDRI

returns the value 0.

I,

jFUNCTION INDLOW(XVAL,X,N,EPS)
Function

Given that the array X contains a sequence {xj} of

monotontic increasing or deceasing values of x, then INDLOW

finds the lowest value of i such that xi is to the left of Xval,

(see Section 4.4.2.). An error margin, E, is allowed for so

that for (xi} increasing,

INDLOW -min{i : xi > xval+L

or for {x i } decreasing,

INDLOW - min{i : xi < xVal-

Parameter List

XVAL: Value of x for which the index is required.

X: Array containing {xi}.

N: Number of values in {xi).

EPS:Error tolerance,

Operation

For {x i } both increasing and decreasing, the required index

is located by searching from i-1 to i-N until the first node is

found that meets either xi>XVal + C. ({xi} increasing), or

xi <XVal- ((xi decreasing).

Note that is all the values of {xi} are less than x, INDLOW

returns the Value N+.I
F
I:

,|

4.4.3. Merging

Given two monotonic increasing sequences, (xi) and (xj}

say, of a variable, x say, the operation of merging these

sequences to form a new sequence {xk} can be defined in the

following way.

The new sequence contains a stictly monotonic sequence of

values of x selected from {xi and (x). Values of {xi} and

{x } that are coincident, (either within the original

sequences or between sequences), within a "zone of

coincidence',o6 , are coaleesed as a single value in {xk>. The

sequence {xk} can be vignetted so that values within the

interval Ixmin' Xmax] only are included. If no values in (xi}

or {x i are coincident within xmin and Xmax (withinig) then the

limiting values are inserted in the sequence (x k.

In all cases the smallest value of x in the sequence (Xk} is

that with k-i.

If one of the sequences {xi} or {xj} is empty, then the

operation of merging reduces to a vignetting operation to

produce a sequence confined to the interval [x min' xmax]

Subroutine MERGE, described below, performs the operation

of merging.

'I I

SUBROUTINE MERGE(XI,MI,X2,M2,OUT,XLOW,XHIGH,EPS)

Function

Given two monotonic increasing sequences of values of x,

((x i) and (x }), stored in the arrays X1 and X2, MERGE forms a

new monotonic increasing sequence of values, (xk) , according

to the definitions given in Section 4.4.3.

Parameter List

Xl: Array containing (xi).

Ml:Number of values in x i}.

X2: Array containing (x

M2: number of values in {xj

OUT: Array in which the new sequence will be returned to the

calling code.

M: On entry; number of values OUT can store. Returned as

the number of values placed in OUT.

XLOW: Lower limit for x in the new sequence.

XHIGH: Upper limit for x in the new sequence.

EPS: Coincidence margin.

Significant local variables

EMPT*(1: Logical switch signifying, when true, that {x } is

empty.

EMPTY2: Logical switch signifying, when true, that {x } is

empty.

J: Counter for OUT. Location of last entered value.

11: Counter for X1. Location of next value to be

considered for placement in the new sequence.

I

'I.

12: Counter for X2. Location of next value to be

considered for placement in new sequence.

LLAST: Location of last acceptable value in X1.

L2LAST: Location of last acceptable value in X2.

CURR: Last value placed in the new sequence.

Error Messages

(i) 'ERROR IN MERGE ... XILOW IS GREATER THAN XHIGH"

'XLOW - ****& XHIGH -

I A

5. DESCRIPTION OF THE NER? COMPUTER CODE

The previous Chapter described the various numerical

methods and associated FORTRAN subroutines and functions

which, although part of NERF may, in principle, be used

separately. These routines were capable of description as

separate entities. The remainder of the routines which

comprise the NERF computer program perform operations that are

more specifically related to the evaluation of reliability

functions: their descriptions are more effectively made when

considered as part of the overall computer program.

5.1. General Coding Philososhies and Methods

N!RF was designed primarily to evaluate the reliability

functions derived in Chapter 3. A secondary, and vitally
important objective was to provide versatile methods for data

input, result presentation and fault diagnosis. It is

therefore a large program but is highly modular, containing

over 100 FORTRAN subroutines or functions, each of which

performs a well defined and specific task.

The construction of a computer program of this size requires

careful thought and the subsequent documentation more so.

Generally, the code was written in such a way that a balance

between computational efficiency and code 'transparency' was

achieved. To a large extent, 'transparency' was assured by the

high degree of modularity; the majority of subroutines contain

less than one page of coding and each significant operation

within a routine is separated by appropriate comments so that,

given a statement of a routine's operation, an experienced
FORTRAN programmer should have little difficulty establishing

'what the code is doing'.

The subroutines in NERF form a hierarchy typical of any

large computer program. At the apex of the hierarchy, the
'main program' controls the overall sequence of operations. At

the base of the hierarchy there are many subroutines which

perform basic numerical or communications tasks. The bulk of

the routines lie between these two extremes. The higher a

subroutine or function is in the hierarchy the more global is

its operation.

The documentation presented in this Chapter concentrates

most heavily on the higher level subroutines. Each routine is

described , at least, by a stylised summary as developed in the

previous Chapter. For many low level routines, this summary

.1 together with the code itself is sufficient documentation.

Higher level routines, because of the more general and often

complex interaction with other routines may require flow

diagrams and, especially in the case of the mathematical

functions used to evaluate the reliability functions, detailed

mathematical descriptions.

In these descriptions and flow diagrams, a mixed notation

comprising both mathematical symbols and program variable

names is used. Often the mixed notation will provide implicit

definition of local variables in a routine: because most

routines are short, explicit definition of all local variablesJ

is not given.

Variables in COMMON storage are, however, described inf

detail in Appendix A.2. COMMON storage is structured,

consisting of many named COMMON blocks each of which contains aJ

small number of related variables. It is suggested that the

reader becomes familiar with the variable names before

attempting to understand the detailed documentation presented

in this Chapter.

The current version of NER! is the result of several years

of development of computer programs for the evaluation of

reliability functions and this development has spanned several
changes in mathematical notation. Consequently, the names of
many of the variables do not bear am obvious relationship with

the mathematical entities they represent. Thus far it has

'I A~9
been considered impractical to undertake the large task of

[changing the variables names throughout the code.

f
I
I
I

V

i 1'

I

~-.-y I

240

5.2. Principal Phases of Operation and Program Output

The sequence of general operations performed by NERF can

be divided into five phases; Initialisation, data input and

initialisation of the computational algorithms, the construction

of a time sequence of reliability functions, the calculation

of strength distributions and, finally, program termination.

This sequence of operations is controlled by the 'main

program', called PROGRAM NERF, which resides at the apex of the

hierarchy of subroutines in NERF. The control of major operations

is effected by calls to appropriate subroutines, the description

of which forms the bulk of the remainder of this Section.

The first phase, 'initialisation', is short and is

executed by code within PROGRAM NERF. The.run time clock

is initialised by calling a system supplied subroutine, TIMES,

which computes the current job time in milliseconds. The various

output files (see Section 5:2.6) are opened and the time and date

written on selected output files.

The other four phases are more significant and are described

in the following Sections.

ii

I.

I

PROGRAM NERF

f Function

PROGRAM NERF controls the general sequence of operations of

the NERF computer program.

Operation

PROGRAM NERF controls the sequence of operations listed in

j Table 5.1. These operations fall into five phases as

identified in Section 5.2.

Generally the role of PROGRAM NERF is to transfer control

between the various subroutines that perform the major

operations in each phase. The exception is the code associated

with the first phiase which initialises various output files and

intitialises the timing routines which accumulate the run time

for the computer program.

Note that prior to calling CYIN, PROGRAM NERF reads the

first two records of the control file to determine the run

identification and to establish whether the run is interactive
or batch. This information is required by the code in PROGRAM
NERF prior to the call to CYIN which actually re-reads these

variables. This seemingly redundant action was unavoidable if

CFIN was to be accessible by other programs (such as NERPRE and

NERPLT) which may have no reason to access the control file

directly.

I

i

I
-. I

Phase Operation Subroutine

1. Start run-time clock. TIMES

Initialisation Open Control file.

Open output files
(see Section 5.2.6).

Write date and time
on selected output
files.

2.
Data input and Read data from Control CFIN

algorithm file.

initialisation Initialise functions CFINand probability densities.

Write abbreviated heading
on secondary output and
data files.

Initialise loss factor SETTAB
interpolation.

Initialise pff(t, n O) RFSET

nodal arrays.
Write heading on primary HEAD
output file.

3.
Construction of time ADVNCE

sequence

4.
Calculation of FLPROB
strength distributions

5. Update Control file with i
new run number and restart CFNEWTermination information.

Terminate program and FINISH
output run time.

Table 5.1. The phases of operation as controlled by PROdRAM

NEJRF.

I

5.2.1. Data input and initialsation of computational algorithms

Input data for the NERF computer program is assumed to exist

on the files listed in Table 5.2. The control file contains the

data and control parameters necessary to define a given run.

The function files define the input functions by specifying

ordered pairs of function and argument values.

The control file is read by the subroutine CFIN and its

format is specified in the documentation for that subroutine.

The function files are read by the subroutine READFN which is

called during initial entry into each of the functions used to

evaluate the input functions. The format for these data files

is specified in the documentation for READFN.

The control and function files can be produced directly by using

the usual text editing facilities provided by the computer

system on which NERF is installed and adhering to the specified

formats. However the recommended method is to use the

preprocessor NERPRE which provides data editing facilities and

by virtue of the fact that it uses CYIN and READFN itself,

ensures that the data files are compatible with NERF.

The final input file in the Table, GCOM.DAT, contains a dump

of the loss factor interpolation table. This is a binary file

and is produced by NERF via subroutine SETTAB. It is not

possible for the user to produce this file in any other way.

Setting aside the initialisation of output files and run

timing procedures carried out by the code in PROGRAM NERF, the

data initialisation phase consists of the following steps.

(i) The data defining the run is read from the control file

and the input functions and probability density

functions initialised. This step is executed by CYIN.

(ii) Default limits are set and, if required, the loss factor

interpolation table is constructed. SETTAB performs

these functions.

,,'I

File Name Logical Type Contents Documentation
Unit No.

CONTRL.IN 7 Control Control data Table 5.3.
defining run

(CNAME).FCN 2 Function Ordered pairs Section 5.3.1.
for a(i)

(PNAME).FCN 2 Function Ordered pairs Section 5.3.!.
for R(a)

(RNAME).FCN 2 Function Ordered pairs Section 5.3.3.
for FLCA)

(DNAME).FCN 2 Function Ordered pairs Section 5.3.4.
for Cd(a)

GCOM.DAT 7 Loss Nodes used for Section 5.4.
factor loss factor

table interp~lation

Table 5.2. Input data files accessed by NERF.

A name in parentheses indicates the variable in which

the file name is stored in NERF. The name consisting

of up to 5 characters is read by NERF from the control

file.

I

2>

(iii) IFSET is called to calculate nodes for the evaluation of

pffI(t,no

The operations performed by these routines are

described below.

I

I

K

I

SUBROUTINE CFIN(ICODE)

Function

CFIN reads the control file and initialises the input

functions and probability density functions.

Parameter List

ICODE: Control parameter which determines the extent of the

operations performed by CFIN, according to the

following definitions.

1; The control file is read up to, but excluding, the

inspection information.

1; The complete control file is read, but no further

processing is made.

3; The complete control file is read and the input

functions and probability density functions

initialised.

Operation

NERF reads a 'control file' called CONTRL.IN which contains
all the control parameters for a-given run. The file also
contains information necessary to re-commence calculations

from a previous run which had terminated prematurely because of

run time limitiations.

The format of this file is specified in Table 5.3. and the

operation of the subroutine in so far as the input of data is

concerned, is a direct implementation of this specification.

Data initialisation within CFIN is concerned primarily with

the input functions and probability density function. The

former are initialised by using the appropriate function

routines to activate the initialisation coding within them.

For example,

'I:

1 i IL

Record Format Name Type Meaning

I A5 TITLE(1) text Run I.D. (ncl. number)

2 L1,G BATCH logical Batch switch

2 G RTIME real Run time (minutes)

3 a RMUO Ireal R median initial strength

4 G RATEL !real lr, load application rate

5 Q CNo real ao, initial crack length

6 G KALP integer p.d.f. identifier - 3 .

7 G ALPC1 real

8 (ALPC2 treal p.d.f. parameters "- .

9 G ALPC3 real

to 0 ALPMIN real sin value foro..

11 G ALPMAX real max value for eL

12 G KBET Integer p.d. Z. identifier - 1

13 G BETC1 real

14 G BETC2 real p.d.f. parameters X

15 G BETC3 real

16 G BETMIN real min value for

17 a BETMAX real max value for X 1

18 G KCRK integer p.d.f. identifier - aO(orXD

19 G CR11 real

20 a CRKZ real p.d. f parameters - t (or x.)

21 Q CRK3 real

22 A5 RNAME text 5 chr. name for load
function file

23 A5 PNAMB text 5 chr. name for strength

function file.

24 A5 CNAME text 5 chr. name for crack
growth function file.

25 A5 DNAME text 5 chr. name for crack
length inspection
function file.

26 G EPS real integration convergence
criterion

27 G RLEV real Max. no. of levels

28 RVALS real Max. no. of evaluations

29 8LI POPLOS logical Population losses switch

FULSV logical Full survivorship switch

CONTI logical n.a. (no longer used)

_'____ - PERI logical Periodic inspection switch

Table 5.3. Specification for tne control file, COTRL.IN.

Record Format Name Type Meaning

29 8L1 LIMRSK logical Limit risk inspection
(coant.) switch

INSLOS logical replacement switch

VIRGIN logical uncracked risk switch

RESTART logical re-start switch

30 3L1 ALPOON logical constant OL switch

RETCON logical constant X (or 0) switch

RNOCON logical constant ao (or n0) switch

31 G XMAX integer N, number of evaluation
times

32

to G RNSVAL Array of evaluation times,

32 MX t a

33 -HMAX G NWAX integer M, number of strength

distribution times.

34 +NMAX
to G RNDIST real tm, strength distribution

34 tNMAX times

4-NDMAXI

Snd of first group of data

35+xKAx G NIMh integer J, number of inspection
4NDKAX times'

36 *xAX
4-DMAX

to G RNINS real tj, inspection times

36 oNMAX

+NIMAX
-36 NTOT

37 4-NTOT G CND real a crack length inspection
criterion

38 +YTOT G PLD real Rp, proof load inspection
criterion

39 *NTOT G RLMRS(l) real first limit risk

40 4NTOT RLMRSK(2 real second limit risk
41 +NTOT

to G RSK real contents of common
56 INTOT block, RISKCI; re-start

information

End of second group of data

- Table 5.3. Continued.

XXX - CRKGR(0.0)

will initialise the crack growth function, (and assign XXX the

value a0 (0)). The latter are initialised by calling the

appropriate se't ting routines, (e.g. BETSET to initialise

PS(0)) followed by the subroutine RANGE to find the sensible

limits for the random variable. These limits override those

input via the control file only if they represent a tighter

restriction of the random variable. In the case of initial

crack length, the input limits are assumed to be such that

initial age lies in the interval [tEi,?f , (corresponding to the

default limits (3.48) and (3.49)), and following

initialisation, a normalisation factor is computed using the

adaptive integration function ADAPT2. The density function is then.

modified via the function RNONRM. For further details of the

initialisation of the density functions refer to the

documentation of relevant functions in Section 5.+.4.

Several minor data initialisation operations are executed

by CFIN. These are itemised below.

(i) The integration control parameters are transferred to

the relevant storage locations in each of the three
adaptive integration routines which are also
initialised via the subroutine ADASET.

(ii) If population losses are ignored by the model (POPLOS

true), then P (t) must be computed from r(t). In this

case, FULSV is set false,overriding any setting given by the

User*

(iii) The re-start option is not permitted if RNSOLD, (the

last value of t) is zero. In this case RESTRT is set

false, overiding the setting in the control file.

(iv) The uncracked structures switch, VIRGIN, is set true

only when ' iO, n0 0 and VIRGIN is true in the control

file.

1*

(v) A model is flagged as having constant initial crack

length if either CNO (a0) is set to zero in the control

file or the switch RNOCON has been set true.

(vi) NOUT is set to idenitify the outermost level of

integration.

t .1

,:

.. _.17

SUBROUTINE RFSET(RFARG,IK)

Function1
The evaluation of pffl(t,n0) involves an integration along

the line Rmin- n f(), This integration has been found to

require that nodal values for *(which correspond to those in

used to define yo(p) are used as a basis for the adaptive

integration stategy. Subroutine RFSET calculates those

nodes.

Parameter List

RFARG: Array into which the . nodes are returned to the

calling code.

IK: Number of nodes in RFARG.

Operation

The limits of integration for o are (from equation (3.97)),

R min/f(p,R min) and oL2(t ; (R m in),R m n). Ignoring the effects

of the proof load inspection boundary and variations in no, . the

limits for the *L nodes are,

maxz(min' Rmin/I("i) } < o< minCmx Rmin/r(f)} (5.1)

Because of the limiting assmptions made by the function PSINV,

corresponding 0 limits can be found by,

min - PSINV(RMIN/ALPMIN)

- ma('m'i,f'(Ri ,mi,

and

#max " PSINV(RMIN/ALPMAX)

mif,r (Rmin max

These limits are calculated by RPSET and used, via the

subroutine MERGE, to produce a vignetted sequence of nodes.

The 0 nodes are then converted to oL nodes, (using the

relationship LRmin/r(p)).

Note that RFSET must be called after SETTAB to ensure that

the correct default limits have been set.

Ir

SUBROUTINE SETTAB

Function

Subroutine SETTAB sets the default limits for R and and

initialises the loss factor interpolation table. The

subroutine also controls the construction of contour maps of

the loss factor functions.

Operation

A flow diagram of the major operations performed by SETTAB

is shown in Figure 5.1. Those operations associated with the

iniiialisation of the loss factor interpolation table are

described in Section 5.4.2. The description presented here

pertains specifically to the calculation of the default

limits, the graphical operations and the more mundane aspects

of the subroutine documentation (e.g. COMMON variables

changed).

(i) Default limits

The default limits are defined by equations (3.43)

to (3.49). Those for n0 are set by CdIN, or following an
inspection, ADVNCE. The remainder are set during the

first sectiou of the code in SETTAB.

Using primes to denote the input values of

variables, the limits for R are

R max M L1AX - min(.max Rfax)
- AMZINI(ALPMAX,R(M)) (5.4)

and

[1 .iRn - RHIN - max(t R***),RLn

- AMAX1(ALPMIU*PSI(RN,),R(l)) (5.5)

After setting these limits, the interpolation tablesI

IL
1OL

Orefis 0 K

KwIPLOS

Figure 5.1. Fl.ow diagram for the major operations performed by
SETTAB.

nOt

I)M

It

1)0

'ATC ___ot

for r 2 (R) are altered accordingly using the subroutine

MERGE to vignet the sequence of ordered pairs and

function RLOSET to recalculate the interpolation

tables.

The default limits for Q are,

t- RNI - max tf yo Rfx .~i
- AMAXI(RNI,PSINV(R(M)/ALPMIN)) (5.6)

and
t ' (Rm i n / s x) ax

- AMIN1(RF,PSTNV (R(M)/ALPMAX)). (5.7)

Subroutine MERGE is sed to vignet the ordered pairs

defining y(P) and to include three additional pairs

-11
having values, F'(R a10-.a)1 , 0-. l/4tL n and

p (R Mn/R max) which are used in the construction of
the loss factor interpolation table (Section 5.4.1.)

The interpolation tables for yp(o) are then modified

using PSISET (Section 5.3.2).

(ii) Loss factor table

When the loss factor interpolation table ts

constructed, SETTAB dumps a binary record of it in a

file called GCOM.DAT. Before constructing any table

SETTAB accesses this file and checks whether the

existing table is satisfactory. If the variables

listed in table 5.4. are in agreement with those

recorded in GCOM.DAT, the construction of a new table is

bypassed.

(iii) Contour mas of loss factor functions

SETTAB provides for the optional printing and

contour map construction of the functions

Vari abl e Significance

Name

RNAME Name of file containing PL(R)

PNAME Name of file containing R(a)

CNAME Name of file containing a(i)

RNI i (after default limiting)

ALPMIN a(mi n Lower limit for w-

ALPMAX Amax Upper limit for -

EPSINT F.rel Error criterion for
adaptive integration

N Number of nodes defining W(A),
after range adjustment by
SETTAB

KLIM Number of nodes allocated for

at direction interpolation
for the loss factor table,
see Section 5.4.

Table 5.4. Variables tested for acceptance of a

loss factor table stored in GCOM. DAT.

I

.11

uq and

called the 'G integral' and the "G function'

respectively. The .significance of these functions is

desdribed in Section 5.4. The last section of code in

SETTAB controls the construction of the maps using the

subroutine INTPLT.

COMMON Variables Channed

BETA: Array of (values defining tr(F).

PS: Array of y values defining y(o).

N: Number of ordered pairs defining l).

R: Array of R values defining r 2 (R).
\2

RLD: Array of values of log(r 2 (R)).

M: Number of ordered pairs defining r2 (R).I!
RNO: Current value of no.

.G: Two-dimensional array containing loss factor

interpolation table.

KLIM: Number of rows in the loss factor interpolation table.

ALPI: Array of lower a limits for loss factor interpolation.

ALP2: Array or lower OL limits for loss factor interpolation.

BETV: Current value of

ALPV: Current value of o.

GEXP: Work space in block GCOM.

Iy

(Significant Local Variables

RMIN: Minimum value of R.

RMAX: Maximum value of R.

BETLOW: Minimum value of (.

BETHIG: Maximum value of (.

PSIV: Current value of

ICOUNT: Integer array containing the numbers of function

evaluations used to calculate the values in the loss

factor interpolation table. (Shares space with GEXP.)

GEXP: Used durig the last stages of SETTAB to store the loss

factor functions prior to printing or contour map

construction.

Prompts

(i) 'R LIMITS BEING CHANGED'; The default limit equations

imply a change to the range of R.

(ii) 'TI IS BEING CHANGED': The default limit equations

imply a change to ci"

(iii) 'TF IS BEING CHANGED': The default limit equations

imply a change to -f.

(iv) 'DATA FILE NOT ACCEPT ABLE ... G BEING CALCULATED': The

data in GCOM.DAT is not acceptable.

(v) 'G ARRAY READ FROM DISK FILE': The data in GCOM.DAT is

acceptable.

(vi) 'PRINT G INTEGRAL?': Request for user response whether

to print the G integral.

(vii) 'PLOT G INTERAL?': Request for user response whether to

construct contour maps of the G integral.

,i:

'i.1
..L . .

(viii) 'PRINT G FUNCTION?': Request for user response whether

to print the G function.

(ix) 'PLOT G FUNCTION?': Request for user response whether

to construct a contour map of the G function.

II

26

5.2.2. Development of a time sequence including inspections

I Following the data inftialisation phase, the time sequence

of reliability functions can be constructed. This phase, which

accounts for most of the computational effort made by NERF is

controlled by the subroutine ADVHCE.

The reliability functions are computed at time values (tk}
which are a combination of the sequences (t n}, (evaluation

times), {ti), (inspection times) and (tRm), (strength

* distribution times) as outlined in Section 3.6. These

sequences are specified as part of control file data or, in the

case of tij and[tm.,can be computed by NERF.

During this phase, all the reliability functions save for

the strength distributions are computed at each value of tk.

Sufficient data is stored at each value of tRm to per'mit the

code associated with the following phase to compute the

strength distributions with a minimum of effort.

Although the overall construction of the time sequence is

controlled by the subroutine ADVNCE, function RSKTOT which

computes the set of reliability functions at a given value of

time makes a significant contribution to the generation of the

time sequence.. This function is therefore included in the

descriptions presented below.

I.

1'

SUBROUTINE ADVNCE

Function

Subroutine ADVNCE controls the construction of a time

sequence of reliability functions.

Operation

ADVNCE contains two main sections of code. The first

initialises all the variables required during the development

of the time sequence. The second section constructs the

sequence.

(i) Section I

The operations performed by the first section of

code in ADVANCE are best described in the order they

appear in the code. The paragraphs below correspond

approximately to the various sub-sections of the

code, (as identified by comments in the program

listing).

The set of reliability functions and various related
parameters are stored in the COMMON block RISKCM.
Although the variables in all COMMON blocks are defined

in Appendix A.2., those in RISKCM are listed in Table

5.5. for easy reference.

The first set of operations are associated with

initialisation of flags and preliminary output. The

flags INTOFF and the switch OUTINT are given default

values and the subroutine OUTPUT is called to provide

appropriate headings on the primary output file.

The merging of the two sequences (t n) and (t Rm

commences with the setting of the three switches

FLSTOR, BEFORE and AFTER which are used by subsequennt

coding to store data at specified values of tRm, store

data just before each inspection or store data just

€I

Variable Symbol Significance
Name

RLT PS(t) Probability of Survival

RSLT r (t).Ps(t)

RFLT rf(t).PS (t)

RTOT r(t) Total risk rate

RS rS(t) Risk of static fracture

RF r f(t) Risk of fatigue life
exhaustion

RV rv(t) Virgin risk

AVGRS E(F).PF(t)

AVGLT E(F) Expected time to failure

(Equation 3.176).

RLTINS £ Pdet(ti) Fraction of population
removed by all previous
inspections

RNSOLD t Within RSKTOT these

ROLDLT p (t) have the value at the
F Jlist time of evaluation

RNIM ti time of last inspection

RDET Pdet(tij) Probability of detection
at the last inspection

(Calculated by ADVNCE)

RMEAN r mean(t) Mean risk (equation 3.175)

Table 5.5. Variables stored in the common block RIS(CM.

Unless otherwise specified, definitions refer

to value on exit from RSKTOT.

:\ £

after each inspection respectively. If the either of

the last two switches are true, the sequence {t Rm) is

empty and no merging is necessary. Otherwise the

necessary merge is controlled by the subrootine MERGE.

It is possible to "re-start' NERF following

premature termination of a previous run. If the switch

RESTRT is true, INDLOW is used to find the first value

in the evaluation time sequence which is greater than

the last value computed (RNSOLD). Otherwise RSTART,

(the first time value) is set to RNSVKL(l).

Similarly the first specified inspection time

following the last time of evaluation must be found and

the relevant parameters set accordingly. If a restart

is not required, those parameters are bet to their

initial values. The relevant paranters, their variable

names and intitial values are listed in Table 5.6. Note

that if the limit risk and periodic inspection switches

are both set true, then only one time value is allowed

in the specified inspection time sequence {tj}

(RNINS).

If a restart is specified, then the starting value of

the reliability functions are assumed to be stored in

RISKCM, having been read from the control file.

Otherwise, the initial values corresponding to time t-O

are set. Because the values for t-O are not considered

to be part of the program output, initial values are

written on the primary output file (via OUTPUT) in the

case of a restart only.

The final part of thecode in the first section of

ADVNCE writes an appropriate warning on the output

files if Ps(t) is being computed from r(t) by

approximate integration, checks that at least one time

value has been specified and in the case of an

interactive run for which a single time value is

[H

Variable Symbol Value
Name

RLT P S(t) I

RTOT r(t) 0

RS rs(t) 0

RV rv(t) 0

RF r f (t) 0

RMEAN rmean(t) 0

AVGRS E(F)PF(t) 0

AVGLT E(F) 0

RLTINS Pdet (ti) 0

RNS t 0

RNSOLD tk-1 0

ROLDLT pF(t) SMALL

-___(1o - 15)

Table 5.6. Variables initialised by ADVNCE and

their initial values.

I

specified, seeks a response from the user to activate

the optional graphics support functions provided by

NERF.

(ii) Section 2

The second section of code in ADVNCE evaluates the

time sequence of reliability functions. Given the

already merged sequences, {t n} and (t Rm} stored in the

array RNSVAL, the bulk of the code in this section is

concerned with the inclusion of the inspection times

and accounting correctly for the effects of the

inspections according to the options that have been

selected.

Most of the code in this section is contained within

a DO LOOP which terminates at statement labelled 290 and

sweeps through the sequence of time values stored in
RNSVAL. The logic associated with the embedding of the

inspection times within the overall sequence is shown

in Figure 5.2.

As each value of tk is selected from RNSVAL, it is

checked, initially to ensure that it is not zero, and
then to determine if an inspection precedes it. In the

case of periodic inspections, this is simply a matter of

accessing the time of the next inspection, stored in

RINSP.

If the limit risk procedure has been selected, the

total risk at the current value of tk is computed and

compared with the limit risk (RTEST). If the risk is

too large, an inspection is inserted in the interval

(tlast,tk), where tlast is the last time value at which

the reliability functions were evaluated, (which is not

necessarily tk_). This inspection time is found by

solving the equation

ri -

II

Ir

Ia

I[att

inspection times in the overall sequence.

log(r(t)) = log(RTEST) (5.8)

using the function FSOLVE as described in Section 4.3.

Once the inspection time hase been computed (by

either method) the inspection is incorporated into the

model. This operation is expanded in Figure 5.3 and is

detailed more precisely in (iii) below. Control is then

returned to the point where tk has just been selected

and the whole process is repeated until no further

inspections can be included before tk.

Note that if following a limit risk inspection the

risk rate cannot be reduced below RTEST, the limit risk

process is terminated and no further inspections are

attempted.

Once all the inspections preceding tk have been

found, the reliability functions are computed for t-tk .

If FLSTOR is true and tk corresponds to a value in

RNDTST, pF(t), Ps(t) and ti are stored in the next

available locations in RSLTDS,. RLTDS and RNIMDS

respectively.

The code, excluding that between statements 180 and

250 which are described below, follows the logic in

Figure 5.2 in an obvious manner. The code relies on the j
function RSKTOT to return r(t) at the current value of

time and to update the reliability functions stored in

the COMMON block RISKCM. The subroutine OUTPUT is used

to record these functions on the primary output file. '1
(Section 5.2.6.)

(iii) Inspections

Once an inspection time has been determined, the

effect of the inspection is incorporated into the model

by the logic shown in Figure 5.3. This logic controls

the output of the reliability functions just before the

H

Wet.101 .

4tsvWO

CaI J

Fiue53.Lgcasoitdwihicrprtn>teefc

A.. of an In s Wi h mdl

inspection, the adjustment of the inspection dependent

parameters in the model and the calculation of the

reliability functions immediately following the

inspection. Provision is also made for the storage of

the parameters required to compute the strength

distributions either before or after each inspection.

This code also calculates the probability of

detection, Pdet (t), at the inspection. If Ps(t) is

calculated by an approximate integration of r(t),

(FULSV-true), then an integral expression for Pdet(t)

must be used. This is controlled by the function FDET

which must be called prior to the alteration of the

inspection dependent parameters of the model. If there

is no replacement at the inspection, P (t) isdet
subtracted from Ps(t) , (RLT). Note that once this

change to RLT has been made the effect is permenant only

when Ps(t) is calculated by integrating r(t).

if P_(t) is calculated via a full integral

expression for PFCt), then Pdet(t) can be evaluated by

taking the difference between P (t) just before and
just after the inspection. This calculation must, of
course, be made after the inspection dependent

parameters have been changed.

If structures removed during an inspection are

replaced by 'perfect structures' (see Section 3.6.2.)

the probability of survival is corrected by equation

(3.183) in function RSFTOT. The sum of the P det(t)

terms for all previous inspections is stored in RLTINS

which is updated by ADVICE. This means that the value

of P (t) calculated by RSKTOT just after the inspection

is in error and appropriate adjustmants to all

functions depending on P$(t) for their evaluation are

made. -

j II

Graphics Operations

During an interactive run which involves a single

evaluation time, NERF provides the facility for constructing

various graphical representations of the integrations. ADVNCE

seeks a response from the user regarding this option.

Sianificant Local Variables

RNDS: Stored value of td .

RND1: Maximum value of td as determined by the proof load

limit, 1T (Rp/O'*max)

FLSTOR: Logical switch. If true strength distribution data is

stored at the specified times stored in RNDIST.

AFTER: Logical switch. If true, strength distribution data

is stored just after each inspection.

BEFORE: Logical switch. If true, strength distribution data

is stored just before each inspection.

Ml: Temporary upper limit for NMAX.

RNSWIN: Minimum value for (t 1
n

RNSMAX: Maximum value for {t }.
n

IDCURR: Location of the next free storage areas for strength

distribution data.

RSTART: Starting value of time for the current run.

ISTART: Initial value of k, (index for {tk)) for the current

run.

RINS'P: Time of the next inspection.

RTEST: Current value of limit risk.

RNIM: Last inspection time.

I'

~Z 72_

RI: Logarithm of the last value of total risk, r(t).

I: Main DO LOOP index, - k.

Prompts

(i) " WARNING FOR SURVIVORSRIP CALCULATION

IF THE TIME INTERVALS ARE LARGE

FULL SURVIVORSHIP SHOULD BE USED':

Written only when FULSV is false. Warns use that

int 7ration of r(t) to yield PS(t) is approximate.

(ii) 'DURING THE CALCULATION OF RISK

ARE PLOTS REQUIRED'

Prompts the user to select the optional information

plotting facilities. Appears only when a single

evaluation time has been specified and during an

interactive run.

(iii) 'INTEGRATION INFORMATION PLOTTED' Echoes the user's

request to plot integation information.

(iv) 'FINDING RNS CORRESPONDING TO LIMIT RISK': Notification

that FSOLVE is controlling the time that the

reliability functions are being evaluated to find a

limit risk inspection.

(v) 'RISK AT INSPECTION': Notifcation that any following

prompts are associated with the evaluation of the

reliability functions just prior to an inspection.

(vi) 'RISK FOLLOWING AN INSPECTION': Notification that any

following prompts are associated with the evaluation of

the reliability functions just efter an inspection.

Error Messames

(i) 'NO TIME VALUES': There are no evaluation or strength

distribution times specified. Processing is

tterminated.•

_1 ,

(ii) 'RISK AFTER INSPECTION GREATER THAT LIMIT RISK':

Inspection has failed to reduce the risk rate below

limit. No further inspections are atteupted.

I
I
I

if!

j-j

iiI ,

FUNCTION RSKTOT(RNS)

Function

RSKTOT returns the value of r(t) for a given value of time,

RNS. The function also evaluates the reliability functions

PS(t) , rv(t) , r5 (t) , rf(t) , rmean (t) and E(F) together with

other time dependent functions used in the derivation of the

reliability functions and stores the results in the COMMON

block RISKCM (see Table 5.5).

Parameter List

RNS: Value of time for which the evaluation of r(t) is

required.

Operation

The code in RSKTOT folows the logic shown in figure 5.4 and

commences operations by writing a heading for the current value

of time via the subroutine PROMPT and constructing, if

required, a contour map of the loss factor. The remainder of

the operations is simply a systematic progression through the

evaluation of the required reliability functions.

Having set the COMMON varaible RNSV to the new value of time

and transmitting that value to the functions which evaluate

po(g) (via BETCNG), RSKTOT evaluates the three functions

r5 (t)Ps(t) , rf(t)Ps(t) and rv(t)P St) which are stored in

RSLT, RFLT and RVLT respectively. Depending on the class of

model, the first two functions are evaluated either by

integrations over initial crack length using ADAPTO or by

making point evaluations of the relevant integrand functions.

In the former case, integration limits frr a0 and n o are found

according to the logic described in Section 5.6 below. The

.third function is evaluation by a single call to FRVO.

If FULSV is true, so that PS(t) is calculated via an .
integral expression for P (t), ADAPTO is used again, using the

IN

vp* e 11I

f O* Szn

Lo

Figure 5.L4. Sequence o major operations executed by
RSKITOT,

same limits as used for rs(t)PS(t) If replacement at

inspections has been selected the cumulative probabilities of

detection for previous inspections are added to Ps(t).

If FULSV is false, Ps(t) is calculated by integrating the

risk rate using equation (3.186). This evaluation makes use of

the following equations which define relevant local variables.

RLT - RLT last- RLTDEL (5.9)

where

RLTDEL - (p(t) -PF(tlast))*DNS

/(log(P-.(t)/pF(tlast)) (5.10)

DNS t - tlast -RNSV - RNSOLD (5.11)

PF(t) - RTOTLT (5.12)

I and

PF(t last) - ROLDLT. (5.13)

Note that is is not necessary that t>tlast* The integration

can yeild acceptable results during the determination of a

limit risk inspection time. However, it is recommmended that

the more accurate full integration for Ps(t) is used for limit

risk calculations.

If RLT drops below zero, the operation of NERF is

terminated.

The calculation of the expected time to failure follows

equation (3.178) with the following,

ii
A1

L- "

S77

AVGRS - tPF (t)

- AVGRSlast + CON1*(t.pF(t)-tlast.pF(tlast

+ CONI*(F(t)-p F(tlast)) (5.14)

I' F Flast
SCON1 - (t-t last)/(log(PF (t)IPF(tlast))

- (RNS-RNSOLD)/A-LOG(PDF/PDFOLD). (5.15)

The expected time to failure is then given by

E(F) - AVGLT

- AVRGRS/RLT (5.16)

RSKTOT completes its operation by computing the functions

rv(t), rf(t), r (t) and r(t) which can be obtained trivially
from the functions already computed.

Prompts

(i) 'INFORMATION ------ NS *

Heading to indicate that a new time value is relevant.

(ii) 'PLOT LOSS FACTOR?': Prompt to seek user response

whether to plot contour map of loss factor.

(iii) 'RISK FUNCTION RSLT': Notification that any subsequent

prompts are associated with the calculation of

r (t)P (t).

(iv) 'RF. TERM': Notification that calculation of rf(t) has

commenced.

(v) 'PROBABILITY OF FAILURE": Notification that the

calculation of PF(t) has commenced.

I--

i .i K

11A4'. 69' NI II A COMPUlIR PROGRAM FOR tiff NUMIRICAl IVAIUAII 4i1
(if IIIIEABI EY EtA (L AO#AU ICA(RESIARC1 tABS
11ELBOURNE IAUSIRAIIAI G 0 MA jANSON [I At. SEP A3

0AR I SLIC lq7 I/,q/ l

I'll'''i~h..'

Eu'

(i) 'PROBABILITY O SURVIVAL HAS REDUCED TO 0.0': PS (t) has

reduced to belov zero. NERI is terminated.-i i

ii

ijf

_Ile
,ii

IFUNCTIO RSKLOn(ARG)

Function

RSKLOG returns the value of log(r(t)) for a given value of

I time (ARC)

Parameter List ARG: Value of time for vhich the evaluation

is required.

Operation

R$SLOG relies on the function RSKTOT to calculate r(t) and

then computes the logarithm in a trivial manner.

I

I i

5.2.3. Calculation of strength distributions

The third phase of operation of NERF is the evaluation of

reliability functions related to variations in strength. The

basic strength functions are the density functions pR(Rit) and

PR (f>t). The corresponding distributions P1 (Rit) and

P (RIF>t) and expected values, E(Rtt) and E(RjF>t) -re defined

by equations (3. 18'1) to (3.184) and can be calculated from the

density functions.

Upon completion of the previous phase, the sequence of time

for which the strength functions are required {(tm) is known

and the values of Ps(t), pF(t) and ti for each of these times

has been stored in the COMMON block DISCOM.

The calculation of the Atrength distributions is controlled

by the subroutine FLPROB which essentially constructs tables

of values of pR(RIt) and pR(RJF>t) for the specified values of

tRm and for values of R in the interval

(max{Rmi mn m (nf)},min{Rmax 'ax}).__ Once these tables have

been constructed and output to the primary output file and to
function files for subsequent plotting, the table values are

integrated to produce the remaining functions which are then

similarly output.

The operation of FLPROB is described below.

A1

II

' Ii
P. I

I
SUIROUTINE FLP O

Function

FLPROB controls the calculation of the reliability

functions that are related to the. variation in strength. These

functions are; pR(RIt), PR(Rit) and E(Rit) the density,

distribution and expected value of the failing load and

PR(R[t>t), P31(R[>t) and F(RIF>t), the density, distribution

and expected value of strength.

Operation

FLPROB contains code which is directly related to the

evaluation of pR(Rlt) and pR (Rlf>t). This code is detailed in

Section 5.8. The remainder of the code is concerned with the

broader aspects of the construction of tables of the strength

functions and is the subject of this description.

The sequence of operations follows the logic shown in Figure

5.5. On initial entry into the subroutine, the limits for R

(RM-IK,RAAX) are calculated and the storage aggangements for

the tables of functions established. Both pR(Rlf>t) and

pI(RIt) are calculated for NT)MAX values of time and Ml values

of R. I0MAX is the number of values in the sequence {tRm} and

Ml is the number of values of R. MI is set within the code in

FLPRO and is currently set at 101. The tables are organised as

NI columns of MI values where Nl1NDMAX+l, the first column

containing the Ml values of R.

Both tables occuoy space in the GEXP array (COMMON block

CCOM). pE(Rit) is stored in the first M{*RI locations,

PR(RIF>t) in locations 1251 to 1250 +MI*WI. (This arrangementR 0.
assumes that there are at most 10 values in {t~m) and that GSXP

as been allocated 2500 words..

The two density functions are evaluated simultaneously in a

nested DO LOOP sequence. The outer loop sweeps through (t&,);

the inner loop through the values of R. As mentioned above,

ixI

$4fL a d%

CI

II 1

Fisure .5. SeqaenCO @ majosert±Ol ILPRD

Flo_ 1t

much of the code in these loops is concerned with the

evaluation of the density functions and is described in Section

1 5.8.

Following these loops, the density function in GEXP is

output to the primpay output file and to functions files for

late plotting by XERPLT. Trapezoidal integration is then used

to integrate each column over R to produce the cumulative

distribution and the expected value. The new table containing

values of the distribution is then output, together with the

NI-i values of the expected value.

The contents of Fl (pl (IF~t) are then transferred to 'EXP

and the operations in the penultimate paragraph repeated.

Significant Local Variables

R MIN: Minimum value for k for the evaluation of the strength

functions. (Note that this minimum is not necessarily

\ Rmi n '•)

RMAX: Maximum value of R for the evaluation of the strength

functions.

MI: Number of values of R.

Ni: Number of columns in table. NI-NDIST+i where NDIST is

the number of values in (t~m}.

PI: Array storage for the table of values of the density

function for strength.

GEXP: Array storage for the table of values of the density

for the failing load.

TI: Storage array for residual term for the density for the

failing load.

EXTNS: Array containing text strings which define the file

name extensions for the function files containinq the

strength functions.I

'pI

LAILS: Array containing text strings used to construct table

headings.

Prompts

(i) "STRENGTM ')ISTRIBUTION CALCULATIONS': Notification

that the strength calculations have comnenced.

(ii) INFORM(ATION ***** TIME = ****': Notification that

functions for a new time value are being calculated.

I.

F fi
r ,

I

5.2.4. Termination

i~'NERF can terminate in three ways.

I (i) The sequence of operations can reach the end of PROGRAM

NERF.

(ii) The allowed run time can be exceeded, as detected by

subroutine EXTIME

(iii) An error condition can result in premature cessation of

operations.

Conditions (i) and (ii) can be treated together as 'normal

terminations'. In such cases, a new control file is produced

by the subroutine CFNEW so that the next run can use updated

information. In cases where an error condition has occurred,

the control file is not updated as it is assumed that the run

will recommence from the initial (or user altered) control

file.

In all cases final termination is made by the subroutine

FINISH which calculates the program run time before completing
the run.

The subroutines CYNEW and CFOUT are described below. EXTIME

and FINISH are described in Section 5.9.

I

I, !

SUIROUTIIE CFNET4

Function

CFNEW produces an updated control file following normal

termination of the operation of NERF. The new control file

contains an uodated run number, new inpsection times and new

contents for the C014MO14 block RISKC~f.

Operation

CFNEW controls the followinj operations.

(i) The original control file is read to restore the first

-rouo of data to their original values.

(ii) The run number is decoded from the text striny in TITLE,

the run number incremented by one and a new text string

is generated.

(iii) CFOUT is called to output the new control file.

(iv) The text string in TITLE is restored to its original

form for use by the subroutine FINISR.

I

t} ,

____ i'

2C71
SUIROUTIE C7OUT

IFunction
fCFOUT creates a new control file fron the data stored in

NERF.

Operation

CFOUT is actually an entry point in the subroutine CFIT and

essentially mimics the input operations perforned by that

subroutine. CFIN outouts both groups of data.

IS

I

I

I

I

5.2.5. Program output

The description of NERF has so far concentrated on the

sequence of operations required to generate the reliability

functions. In this Section the various output facilities

provided by NERF are described.

The computer program NERF is, in fact, one of a suite of

three programs, NERPRE, NERF and NERPLT which combine to form

a complete facility for the evaluation of reliability functions

i for fatigue. The program NERPRE has already been referred to and

provides an interactive facility for generating the control

file (CONTRL.IN) and various function files which define the

input functions as sequences of ordered pairs of argument and function

values. NERPLT is an interactive plotting program which can plot

combinations of functions defined by function files, or the

probability density functions used by NEF.

The relationships between these programs and the various

input and output files is shown schematically in Figure 5.6.

The input data, which has already been described in Section 5.2.1.,

consists of the control file, the loss factr interpolation table

and function files defining a(t), R(a), PL(R) and Cd(a). The

loss factor table (GCOM. DAT) is optional and can only be produced

by NERF via the subroutine SETTAB. The presence of GCOM.DAT as]
an input file serves only to save computational effort: it is

not necessary to define the reliability calculation.

IA

N EI%

Figure 5.6. The relationships between the three programs

NEMPRE, NERF and NERPLT and the various input

and output files.

The 'output data' (as identified in Figure 5.6) produced

by NERF is in the form of function files which define the reliability

functions as sets of ordered pairs. These function files have

a format which is similar to that of the input function files

(specified by the function READFN described in Section 5.9) but

which allows several functions to be tabluated for the same set

of argument values. The only program which can read these files

is NERFPLT which program's function is identified in Figure 5.6

as the production of 'function plots'.

During the creation of the time sequence of reliability

functions a function file containing r(t), rs(t), rf(t), rv(t)

PF(t), Ps(t), E(F) and rmean(t) for all the values tk . For time

values corresponding to inspections, the function Pdet(t) is

also tabulated.

Similar function files are produced by the subroutine FLPROB

to define the various strength distributions. Four files are

produced each containing a single function for several valies

of time (t) tabulated for a range of values of R as determined

automatically by NERF. The five function files produced during j
a single run by NERF are summarised in Table 5.7.

Note that the file names for the function all have the

same 'root', viz, the title for the run. The current version of

NERPRE constructSa title which consists of a two character ident

identification followed by a three character number, (e.g. LM300).

The extension identi'fiee the function file. II

I

SFile Name Contents

I
IDNUM.FCN r(t) Total risk rate

r s(t) Risk of static fracture

rf(t) Risk of fatigue lifeJexhaustion
rv(t) Virgin risk

PF(t) Probability of failure

Ps(t) Probability of survival

E(E) Expected time to failure

rmean(t)

IDNUM.FLD PR(RIt) Density for the failing
- load

IDNUM.FLD PR(ROt) Distribution of the
- failing load

IDNUM.RSD pR(R j F> t) Density for strength

IDNUM.RSP PR(R j F > t) Distribution of strength

i Table 5.7. Summary of function files produced by NERF.

Note that IDNUM stands for the 5 character t
string identifying the run.

I

I 2*

In addition to the function files, NERF produces 3

text records of the program operation, a primary output file

containing the main results of the calculations, a secondary

output file containing information regarding the numerical

integrations and a dialogue on the raote terminal from which

NERF is run. The last can be omitted by running NERF

in the Batch mode. This can be done from the remote terminal

to supress unwanted output, or as was originally intended, to

permit NERF to be run in an overnight batch stream. (The batch

option is specified by setting BATCH -true in the inpirt data;

Table 5.3.)

The primary output file is the 'official record' of

a run. It contains a heading, produced by the subroutine HEAD,

which records all the relevant input data. The heading is followed

by a tabulation of the time dependent reliability functions. This

tabulation is then followed by tabulations of the strength
/

distributions.

The secondary file contains the record of all the numerical

processes used to generate the reliability functions. Each 4
integration produces an informative prompt regarding the error

estimates and number of function evaluations used. Warning and

error messages issued by the various numerical algorithms also

appear in the secondary output file. The secondary file is the ii
'operator's' record of the run. 11

Output to the primary output file is handled by the subroutines

HEAD, OUTPUT and FLPROE together with a small section of code-t

I

I in PROGRAM NERF. HEAD constructs the heading echoing the input

data. OUTPUT constructs the table of time dependent reliability

functions and also transmits the required information to the

time sequence function file. FLPROB constructs the tables of

strength distributions.

J The secondary output file receives a heading from PROGRAM

NERF. Otherwise all output to this file passes through the

routines ARROUT, PROMPT and ECHO. ARROUT writes the contents

of a two-dimensional array and is used to dump the loss

factor table or two-dimensional integrand functions if requested

during an interactive run. During a batch run only the loss factor

table (if created) is dumped in this way. A companion subroutine

IRROUT performs the same operation for integer arrays.

The subroutine PROMPT is used to write messages to the

secondary file. The subroutine also transmits the messages to

the remote terminal if the batch switch is off (i.e BATCH- false).

The subroutine ECHO writes operator responses into the secondary

output file.

I Apart from a small section of code in SETTAB which writes

a heading in the secondary output file prior to calling ARROUT

f to dump the loss factor table, the subroutines mentioned in the

last three paragraphs are the galy sub-programs in the NERF

program which contain WRITE statements.

Output associated with PROGRAM NERF, SETTAB and FLPROB

has already been described. The subroutines* Adi:OUT, IRROUT, PROMPT

-!

and ECHO are described in section 5.9 as they are considered

to be part of the basic communication aspects Of the program.

This leaves the subroutines HEAD and OUTPUT which are described

below.

SUBROUTINE 4EAD

Function

READ writes informative headings into the primary output

file (Logical unit number 3)

Operation

Most of the code in READ consists of WRITE statements and

appropriate FOR14AT statements. The exception is the small

section of code near the begining of the subroutine which

computes the loss factor term, R(?RO,tf,Eit) which is output as

information regarding the significance of fatigue life

limiting. If losses from the population are not neglected,

then this term can be obtained from the loss factor

interpolation table. Otherwise, it must be obtained by

integration, using the function RINTV (see Section 5.4.2.)

1

I
I

I

SUIROUTITN (V'TPUT(RNS,N?)

Function

OUTPUT controls the output of information following the

evaluation of the reliability functions.

Parameter List

RNS: Value of time for which the values have been computed.

NP: Control integer.

-0: Readings are output.

-1: The time is not an inspection.

-2: The time is just after an inspection.

-3: A list of inspection times and the relevant

probabilities of detection are output.

Oneration

The only difference between a non inspection output and one

just following an inspection is that the latter requires the

probability of detection to be included in the list of

varaibles. Subject to this comment, the operation of OUTPUT is

a straightforward implementation of the above definitions.

Full heading and information are transmitted to the primary

output file (logical unit number 3). More concise information

is transmitted to the function file for time 4ependent

functions, (logical unit number 2) and during the execution of

the heading mode, informative messages are trana.±tt4 to the

secondary output file, (logical unit number 4).

11

5.2.6. Graphics operations

As described in the previous Section, the program

NERPLT provides a facility for constructing graphs of the

reliability functions produced by NERF. Because these functions

are stored in function files that have the same format as

those used to define the input functions, NERPLT can also

be used to plot any of the input functions. Figures 3.1 to

3. 10 and 3. 16 to 3.18 were produced by NERPLT.

In addition to the facilities provided by NERPLT, NERF

provides the following which are available when the program

is run interactively from a remote terminal.

(i) Outer integrand plots

Any of the reliability functions can be represented

by equation (4.42), i.e.,

za

where R represents the reliability function and

z the outermost variable of integration. By plotting

the values of Iz (z) as the integrand is evaluated,

Fa graph of the function can be constructed. The

graph, constructed in this way, also indicates the

I performance of the adaptive integration algorithm

in allocating the integrand evaluation locations.I
3 A"

This facility is available for all the reliability

functions thotare evaluated during the construction

of the time sequence and which involve at least

one level of integration.

A typical example is shown in Figure 5.7. The graph

is for the outer integrand of pfs(t,nO) (_ PS(t)rs(t,no))

for example A. The model has no initial crackes so

that pfs(t,O) is given by equation (3.96) with n-0 0,

i.e.,

p fs (t'o) - (p r 2("(,()H(a , ,,t)p.('(4L)

(5.18)

which for a given value of t can be represented by, J
Pfs (t'O)- F 519

where, oco,R) .

(5.ao)

Figure 5.7. shows F (0) for t a 4000 hrs. Note* that,

unlike the figures presented in Chapter 3, Figure 5.7"j

contains the labels actually constructed by NERPLT.

Note the heading contains the run identification,

UM321 (run 321 for the series identified by 'U4').

The name RSLT identifies pfs(t,no) and originated from

earlier notation for the reliability functions. The

m !.

Y

/ -
. ,!; .. [.-- ,.,''T f I I

0. r-e .9

-II
.99

, .. 9 .

i9

equivalences between the labels used by the plotting

facilities and the present notation is given in Section

5. 10.

(i) Integrand - function evaluation maps

For the most general model (Section 3.4.2) with constant

4O, the functions PF(t,no) and pfs(t,no) are defined

by double integrals. The integrands for these functions

can be represented by two-dimensional contour maps

as shown by the example given in Figure 5.8. This

map is for the same integration as the outer integral

plot shown in Figure 5.7. The contour lines represent

values of the function,

which is the integrand of equation (5.18) if the integration

is regarded as a double integral rather than the nested

sequence represented by equations (5.19) and (5.20).

Note that the integration domain is not rectangular and

follows the boundaries defined in Section 3.3.

Figure 5.9. shows an integrand map for the same function

but for tsz500 following an inspection at t 9-1000 hrs. I
The limits shown in this figure can be identified by

studying Figure 3. 13,

I

UA321 RSLT INTEGRAND

I I - I ,I I

IBETA(.9

10 a2

I Figure 5.8. Integrand contour map for pfs(tO)

for example A, t 4000 hrs.

I

3o~~ 302.

LW= RSLT IWN'RAND

I!

70.0

BETA

Figure 5.9. Integrand contour map for pfs(t,O)

for example A, t .1500 hrs following
an inspection at 1000 hrs. The broken

lines identify limits arising from the

inspection logic as Indicated.

, f r. .,.

303 3o .

(iii) Loss factor maps

Contour maps in (A,O) space for the functions used

to evaluate the loss factor, H(acpj,,t) can also

be constructed. The significance of these maps

can be appreciated only after the interpolation procedures

for the evaluation of the loss factor have been described.

For this reason, the description of this facility

is deferred until Section 5.10.

The graphics facilities described in this Section

are provided by a suite of graphics subroutines which are

described in Secti~on 5.10. It is possible to load NERF with

dummy routines which replace the graphics routines and remove,I completely, any reference to graphics software or equipment.

The graphics subroutines can be regarded as being distinct

from the main body of the code associated with the evaluation

of the reliability functions.

Any further description of the graphics code is left

for Section 5. 10. The only exceptions to this are those

sections of the reliability function evaluation code which

jeither initiate graphics operations or store numerical

values for later access by the graphics routines. This code

'I is described under the heading 'graphics operations' in the

subroutine descriptions, (e.g. description of ADVNCE, p 271).

5.3. The Evaluation of Input Functions

The input functions comprise the density functions
for the random variables and relationship between crack

length and age (a(T)), the relationship between strength

and crack length (R(a)), the probability of load exceedence

(FL(R)) and the crack detection function (Cd(a)). Specifications

for these functions were given in Section 3.2. This Section

details the coding associated with their evaluation.

The functions a(!), R(a), FL(R) and Cd(a) are defined

by sequences of ordered pairs of function and argument. These

sequences are presented as input data to WF which generates

auxiliary functions that are used during the calculations. These

auxliary functions are; relative strength as a function of

age,

Sz e =(a(b))fro (5.22)

the two risk rate equations,

rl(R) % r 1 (d) z lr.PL(K-) (5.23) 3
r (R) =.r2(&,f lrL(WaI-)(52)-

and the inspection removal function,

S('t)d1-C(O,(t)). (5.25)

As vell as these auxiliary functions NERF also generates J
inverse and derivative functions vhen required.

Cubic spline interpolation, using the function FINTRP

described in Section 4.2,is used to generate these functions 0
,ith the function DERIV being used to generate the derivative.

The inverse function is found via the secant method described

in Section 4.3.

Each of the input and auxilary functions is evaluated by its

own specific function routine in the NERF package. These

function routines are written in such a way that the method of

evaluation, whether by interpolation or not, is concealed from

the calling code. In principle, the convention of using direct

evaluation for the density functions and interpolation for the

other functions could be changed without any effect to the code

using the functions.

All functions are initialised the first time the function is

called. In some cases a function requires another to be

initialised before it can be used, (e.g. the derivative

functions). Where possible, the initialsation of such

pre-requisite functions is automatic. Where this is not

achieved the documentation descibes the required

initialisation sequence. (The initialisation sequence in CFIN

* currently satisfies all such requirements.)

The functions are described below in groupings according to

the function type as defined in the input data, i.e, functions

depending on a(T), !(a) (R) C (a) or the density functions.

L

!

.11

5.3.1. Crack arowth function

The crack growth function is specified in Section 3.2.1 and

is evaluated by the function CRKGR. The derivative function is

provided bby CRKDEV and the inverse by CRKINV.

Initialisation is effected via the call

XXX - PSI(O.0)

in CYIN. Because the relative strength decay function requires

the crack growth function initialisation of CRKGR is provided

within PSI.

~1

I

, I

f FIUNCTION CRKDEV(ARG)

Function

CRKDEV evaluates the derivative of crack length with

respect to age.

Parameter List

(ARG: The value of age for which the derivative is required.

Operation

The derivative is evaluated by calling DERIV which is an

entry point in the interpolation software. No check is made to

ensure that the crack growth function has been intialised. It

is up to the calling software to ensure that at least one call

to CRKGR is made before calling CRKDEV.

I

II
II

~i

3o0

FUNCTION CRKGR(ARG)

Function

CRKGR evaluates the crack growth function as defined by a

set of ordered pairs of crack length and age.

Parameter List

ARG: The value of age, t, at which the crack length is

required.

Operation

The first time CRKGR is called, the data defining the

function is read from a function file (identified by text in

CNAME in the common block FRAMES) using the subroutine REALIN.

The interpolation function FINTRP is then called to intialise

the interpolation tables which will be used throughout the

current run of NERF as a basis for the evaluation of the crack

growth function.

Evaluation of the crack length function is made by calling

FINTRP using the tables stored in the common block CRKCOM.

If ARG is less than the first value in RNC (the array of

argument values) the length corresponding to RNC(1) is

returned.

Error Messages

(i) 'NOT ENOUGH STORAGE FOR CRACK GROWTH FUNCTION'; The

allocated space in CRKCOM is not sufficient to store the

data contained in the function file. The error is fatal

and the execution of NERF is terminated.

COMMON Variables Accessed

CNAME: live character root for name of the function file

containing the ordered pairs defining the crack growth

function.

', I
!i

COMMON Variables Changed

((First call only.)

NCRK: Number of data pairs defining the crack growth

function.

RNC: Array of ages.

P CRK: Array of crack lengths.

I'

I

J I _

3/0
FUNCTION CRKINV(ARG)

Function

CRKINV evaluates the age corresponding to a given crack

length. It is the inverse function for CRKGR.

Parameter List

ARG : Value of crack length for which the age is required.

Operation

The function FSOLVE is used to seek a solution of the

equation

ARG - CRKGR(CRKINV). (5.26)

Initial guesses for CRKINV for use by FSOLVE are found by

ascertaining the interval in the sequence of crack lengths

which contains ARG. This is done by calling INDLOW. If ARG is

very close to a node, the nodal value is returned. The

resolution of this test is governed by EPS2 is COMMON block

SMALCM. EPS2 is set to the order of the precision of the

computer on which NERF is installed.

If ARG is less than the first crack length in CRK (the array

of crack lengths), then CRKINV is returned as the corresponding

age. Similarly an argument greater than the final crack length

returns the corresponding age.

Note that no test is made to ensure that the crack growth

function has been initialised. The external code must ensure

that at least one call to CRKGR preceeds a call to CRKINV.

COMMON Variables Accessed

RNC: Array of ages defining the crack growth function.

CRK: Array of crack lengths defining the crack growth

function.

i

5.3.2. Strength decay functions

The strength decay function is specified in Section 3.2.2

and defines median strength as a function of crack length.

It is evaluated by the function STRFN.

The strength decay function is used to generate the relative

strength function (E) which is given by equation (5.22).

Given a(i) and R(a), Y() can be defined for the nodal values of

t used to define a(T).

The relative strength function is ipitialised during the

first call to PSI which is subsequently used to provide

evaluations of the function. During this initialisation dummy

calls to STRFN and CRKGR are made to ensure all relevant

functions have been initialised. In this way a single call to

PSI in CFIN is sufficient to initiaise all the functions which
depend on a(*C) and 1(a).

Inverse and derivative functions are provided by the

functions PSINV and PSIDEV respectively.

A facility for re-establishing the interpolation tables

following redefinition of the nodal values of f(i) is provided

by PSISET.

r

-|Ii

3 12t

FUNCTION PSI(ARG)

Function

PSI evaluates the relative residual strength as a function

of age. The function is defined by a set of ordered pairs and

interpolation is used to provide a continuous function.

A secondary function is the definition of the initiation

age, t i and fatigue life limit, If for the model. This function

is provided the first time PSI is called only. (Note that these

parameters are, in fact, specified by the limits for the crack

growth function: these linits are also taken for o(A)o)

The values of Zi and Zf thus defined are subject to the

default limits equations applied by SETTAB. It is possible,

via PSISET, to re-establish the definition of PSI to confirm to

the adjusted limits.

Parameter List

ARG: Value of age for which the relative residual strength

is required.

Operation

The function PSI includes entry points PSISET and PSIDEV.

The principal operations executed by the code follow the flow

chart shown in Figure 5.10.

(i) Initialisation

The first time PSI is called it executes code which

initialises the interpolation procedures for crack

growth and the strength decay functions. The relative

strength function is then initialised by generating a

set of ordered pairs of age and relative residual

strength, f ,by evaluating equation (S.zz) for each

value of used to define the crack growth function

a-a(). The set of ordered pairs thus generated are

then truncated to ensure that r(A). i

ui,

P5r (AR6

Pm.~ET

50Ir f
Se %I

F;4tal-

13

Figure 5. 10. Log:Lc withkin FUNCTION PSI associated
with the evaluation of V'A)

Raving established an ordered pair sequence defining

r() , the interpolation tables are initialised by

calling FINTRP (see Section 4.2.2). The sequence of age

values defining f(() are also used to define 7, and .

Note that It is set to be at least equal to a small

positive number so that the condition f -0 can be

interpeted as being relevant for uncracked structures

for which PSI will return the value 1. The

corresponding variables (RN1 and RNF) in COMMON are set

by this section of the code which can also be accessed

at any time via the alternative entry point, PSISET.

This alternative entry can be useful if external code

modifies the ordered pair sequence defining)(P).

The interpolation function for y,(P) is linear for

1 i fjd where Ojd Is the largest value of the

sequence defining y(A) for which -r(A).>0.9. The final

step in the initialisation process is to use the

subroutine INDLOW to find the location of this node in

the sequence and to save Pjd and the corresponding y

value, 'rjd in the variables BETJD and PSIJD

respectively.

(ii) EvaLuation

Following initialisation, evalation of '() is

simply a matter of using the appropriate interpolating

function. If f<Ajdllinear interpolation is made using

code within PSI. Otherwise FINTRP is used to use cubic

spline interpolation via the tables previously

initialised. J

If P is less than the first nodal value, Ir t , is

returned with the value 1. If A is greater than the

largest 0 node) t f the value 0 is returned. Note that

the function If'(P) thus defined can be discontinuous at

each end of the interval 1Zi tf]*
il-f

COMMON Variables Changed

BETA: Array of values defining YOW>.

BETJD: Pjd' or value marking the transition from linear

interpolation to cubic spline interpolation.

JDIF: The number of the node in the P sequence defining y'(P)

corresponding to fjd

N: Number of ordered pairs defining (

PS: Array of values defining '().

PSJD: rjd or r value corresponding to Pjd" See BETJD above.

RNI: Current value of

RNF: Current value of

I

n n n nI

FUNCTION PSIDEV(ARG)

Function

Evaluate the value of the derivative of Y/() with respect

to

Parameter List

ARG: Value of 0 for which the derivative is required.

Operation

PSIDEV evaluates the derivative of y) either by using the

derivative of a linear interpolation equation for F< Fjd'

(where fjd is defined by the function PSI) or accessing DERIV

which uses cubic spline interpolation.

If P is not in the interval [Titf], the value 0 is returned

for the derivative.

Note that the interpolation tables must have been
initialised by a previous call to PSI before PSIDEV is called.
PSIDEV is an entry point in PSI and can therefore detect if such

a call has been made. If the tables are not initialised an

error message is created and the operation of NERF is

terminated. (Note that this error can only occur if the NERP

computer program is changed from its form at the time of

documentation.)

Error Message

(i) 'PSI DEV ... NO DATA'; PSIDEV has been called prior to a

call to PSI. The interpolation tables have not been

initialised.

p UI

f 3/7

FUNCTION PSINV(ARG)

(Function

PSINV evaluates the age corresponding to a given value of

relative residual strength.

Parameeter List

ARG: Value of relative strength, y, for which age, , is

required.

Operation

The function FSOLVE is used to seek a solution of the

equation

ARG - PSI(PSINV). (5.27)

Initial guesses for PSINV are found by ascertaining the

interval in the sequence of values of V defining ef) which

contains the value of f defined by ARG. This is done by calling

INDLOW. If this interval is such that linear interpolation is

used to define y(f) then the inverse function can be evaluated

directly. Otherwise FSOLVE is used to find the inverse

function.

Note that PSI must be called at least once before PSINV.

I.

-+

31e i/n

FUNCTION PSISET(ARG)

Function

PSISET re-initialises the interpolation tables used to

define -r(p) following alteration of the sequence of ordered

pairs of 1 and by code external to function PSI.

Parameter List

ARG: Value of 0 for which PSISET will return a value of %.

Operation

PSISET is an entry point in the function PSI and its

operation is identical to that described for the

initialisation phase of PSI with the exception that no attempt

is made to redefine the strength decay function (t(a)) or to

compute new values of r as stored in in the array, PS.

Common Variables Chanzed

See function PSI.

'I

/)

it

FUNCTION STRFN(ARG)

Function

1~ STRFN evaluates the strength decay function, -r(a).

Parameter List

ARG: Value of crack length, a, for which the strength, R is

required.

Operation

The first time that STRFN is called the data defining, the

strength decay function is input from disk using the subroutine

READYN. The file is identified by the text string in PNAME in

the COMMON block FNAMES.

After the data from disk has been transferred to local

storage, FINTRP is called to initialise the interpolation

tables.

Interpolation is effected using FINTRP in a conventional

manner. If the argument, ARG , is out of range, STRFN returns

the limit values as defined by the first or last ordered pairs

appropriately.

Storage Conflict

Note that STRFW is normally used during the initial phases

j of NERF only. For this reason, the ordered pairs and

interpolation tables are stored in the common block GCOM which

is used eventually to store the loss factor interpolation

tables. The strength decay function can therfore be accessed

only prior to the first call to the subroutine SETTAB which

initialises the loss factor interpolation table.

r
'I

I,"
S I ib

3zo

5.3.3. Risk rates

The risk rate for structures of given strength R, is given

by,

rk (R) = PL(R).lr (528)

where P7 (R) is the probability of load exceedence. The

specifications for FL(R) and rk(R) are given in Section 3.2.2.

The risk rates are evaluated by the function RLOAD which

uses cubic spline interpolation to interpoalate log(rk(R)).

Note that RLOAD(R) returns a risk rate that is independent

of whether a stucture is cracked or uncracked, (i.e. k-I or k-2

respectively) . It is up to the calling code to make the correct

interpretation.

A facility for re-establishing the interpolation tables is

provide by RLOSET.

4
!
I
I

U %

II

FUNCTION RLOAD(ARG)

Function

RLOAD evaluates the local risk rate for structures with a

given value of R. Beceause the argument is R, the risk rate is

relevant for cracked or uncracked structures.

A secondary function, provided during the first call to

RLOAD is to define the limits for strength R1in and Rmax * These

are assumed by the rest of the code in NERF to be the first and

last values of the sequence of argument values defining the

risk rate function.

Parameter List

ARG: Value of strength, R, for which the risk rate is

required.

Operation

On initial entry, the sequence of ordered pairs defining

P (R) is input from the function file identified by the text

string in RNAME. The nodal values of PL(R) are converted to

values of log(rk(R)) before the tables are initialised.

The evaluation of rk(l) for given R is straightforward.

After interpolation of the logarithmic function, the

exponential of the result is taken to yield the required risk

rate.

I If R<R(), r is set to rk(1(i))1 If >R(M), (where M is the

number of nodes in the sequence defining the risk rate

function), rk is set to 0.

:I "

3L2 |

FUNCTION RLOSET(ARG)

Function

RLOSET re-establishes the interpolation tables following a

re-definition of the ordered pair sequence defining the risk

rate function.

Parameter List

ARG: Value of R for which a value of the risk rate will be

returned following re-establishment of the

interpolation table.

Operation

RLOSET is, in fact, an entry point in RLOAD and commences

operation at the point where RLOAD has just input the seqeunce

of ordered pairs and calculated the values of log(rk(R)).

The facility is provided to cope with the requirement of

imposing the default limit equations for Rmi n and Rmax by

SETTAB.

"I

1a 323

5
T5.3.4. Inspection removal and crack detection functions

I The inspection removal and crack detection functions

were specified in Section 3.2.4. The crack detection function

is defined by a set of ordered pairs of crack length (a) and

Cd(a). These data form part of the input data for NERF which

converts the crack detection function to the inspection

i removal function Sj(t) by applying the equation (3.30), i.e.,

(I S ()z8it) 1 - Cd(a(t)). (5.29)

The (nodes used to define Sj() are the same as those

used to define a(Z).

The function S.(t) is used to evaluate the modified density

(
for e, p$(), given by equation (2.55),

p Pp =, P[(). ,Sj (no + - no)tij/t)] (5.30)"

I where r denotes the last inspection before the current time, t.

The product term in (5.30) is evaluated by the function

SINSP so that (5.30) is replaced by,

I - (5.31)

The function SINSP is written in the same way as the

Ifunction routines for the other input functions in that

initialisation occurs during the the first call to the function.

Initialisation consists of reading the function file for

C d(a) and establishing a sequence of ordered pairs defining

The largest value of a used to define Cd(a) is taken

as a definition for ad and subsequently for td , via,

td - (ad).

These values for ad and 'd are used by the inspection logic

in the usual way.

If a non zero value has been specified for ad prior

to the initial call to SINSP, then the crack detection function

is ignored and the inspection procedure is assumed to be

perfect.

t

!

I

.1
I

I1

II

FUNCTION SINSP(ARG)

Function

SINSP evaluates the factor needed to correct the

density function for 0 for the. effects of all preceding

inspections.

Parameter List
C

ARG: Value of for which the factor is required.

Operation

On initial entry, the function is initialised by the

following sequence of operations.

(W) If CND is non zero, (i.e. ad has already been specified)

the logical variable SINGLE is given the value true

to signify that the inspection removal function will

be ignored. i

(ii) The crack detection function is read from the function

file identified by the name stored in DNAME in the

common block FNAMES. Values of a are stored in

CRPD and values of Cd(a) are stored in PDFN. Both

these arrays are allocated space in the common block

3 GCOM. It is therefore essential that SINSP is called

at least once before SETTAB sets up the loss factor

table.

3Z

(iii) Interpolation tables are initialised for Cd(a).

(iv) RND is set to correspond to the crack length given

by the last node in CRPD, (equation 5.32).

(v) Using interpolation equation (5.29) is applied to

set up a squence of ordered pairs defining Sj(t).

The nodes correspond to the e nodes used to define

() and are vigetted to lie in the interval[Tiotdl.

The t values are stored in SBET and the values of

S (t) in SF5. These arrays are located in the common

block DETCOM.

(vi) The interpolation tables for S.(t) are initialised.

Following initialisation, the product term in equation

(5.30) is evaluated if inspections precede the current time.

Otherwise SINSP returns the value 1.

Lo 1

I]

I

(5.3.5. Density functions

Although the reliability models and input data are defined

in terms of three basic random variables, comparative fatigue

life, intitial crack length and relative residual strength

(X and respectively), the numerical anaylysis is in
terms of the transformed random variables, virgin strength,

age and initial crack length (or initial age).

The evaluation of the density functions for the transformed

random variables is handled by a total of 10 function routines

which have been structured so that the processing of the

transformations and the evaluation of the particular types of
density functions have been separated. The details of the

transformations are a characteristic of the reliability

modelling and will change only when the fundamental modelling

for NERF is changed. It is far more likely that the types of

density functions will be modified and with the present program

structure, this can be effected by changing only two of the

density function routines.

The density functions are defined for a standard random

variable Z, which is related to the basic random variables by

an equation of the form,

Z - (X - e)/v (5.33)

where V and a are called the location and minimum value

parameters respectively. It follows that

pxc.)- pz((x-e)/(v-e))/(v-e). (5.3-1)

I
The relationship (5.33) can be generalised by introducing a

S.t third random variable Y, related to X by,I',

Y - f X (5.35) -

where f5 is a scale factor. The density function for Y is given

by,

py(y) - pz((y-fse)/(fsv-fse))/(fsV-fse) (5.36)

= pZ((Y-es)/(vs-es))/(v,-e S)

where v and e are the scaled location and minimum values 8

parameters respectively. Obviously the effect of the scaling

transformation can be incorporated within the parameters of

the density function, rather than in a transformation equation

which must be processed every time the density function is

evaluated.

The standard density functions evaluated by NERF are,

lognormal, extreme value and gamma and are given,

respectively, by;

pz(z) - C.exp{-O.5(log(z)/ 2) (C - I/J VK) (5.37)

pz(z) - C.z k-.exp(-zk}, (C - k) (5.38)

(z) C.:k-1r(z) C.z - .ex p{- z}. (C-i/r(k)) (5.39)

These standard functions are evaluated by the function PD?

which incorporates the transformation (5.35) by evaluating

py(y) - C.pz(y-es)/(vs-es)) (5.40")

I

where C now includes +1e. normalisation factors

together with the factor 1/(xs-e) in equation (5.36).

The code calling PDF must retain the Parameters k,

1/(vs-e), es and C, which given the distribution type and k, e

and v can be computed to initialise the density function. This

facility is provided by the function PDFSET.

The way PDF and PDFSET are used to generate the desnity

functions for the transformed random variables is outlined

below. Details of the coding are given in the function routine

descriptions which follow.

(i) Density function for virgin strength, _

Virgin strength, L, is related to relative residual

strength X3 by equation (2.29), i.e.,

(5.41)

so that

Pa(,.) Px (-xr)/o (5..2)

which corresponds to the transformation (5-35) with

f -M The function p(,) is evaluated by PULPRA and

initialised by ALPSET.

(ii) Density function for axe, F(O)

Age, A , is related to relative fatigue life, X,

and initial age, n0 by equation (2.28), i.e.,

Stx I + no (5.43)

i so that given no and t,

PO) - pX (t/(f-n O))t/(f-n O) (5.44)

which can be written in the form

,!.

730 33o

p p (/(f n0)WI(f-n o) (.i5-)

where

Py(Y) Px (V0t)t. (5.46)

Py(y) is the density

function returned by PDF A I/e.

The transformation from I to . is handled by the function

PBETA which evaluates the modified density p (0) which

incoporates the effects of the removal function associated
A.

with crack length inspections.

PBETA is supported by the function BETSET which initialises

the density function and BETCNG which allows the scale

factor to be set to a new value of 1/t.

(iii) Density function for initial crack length. p a0 (a)

The density function for crack length is defined

directly by the input data as no transformation is
involved. The functions PRNO and RNOSET provide for
evaluation and initialisation. A third function,

RNONRM allows for normalisation of the density function

(i.e. 3.33) via modificaton of the constant C in

equation (5.40).

(iv) Initialisation and range limiting

The three density functions for the transformed

random variables are initialised by subroutine CFtN.

Each initialisation (using the appropriate

initialsation function) is followed by an application

of RANGE, which is described in Section 4.4. 1. to find

the viable limits for the random variable. For initial

crack length, an integration of the density function

between the limits (wich may be vignetted by those

specified in the input data) is made to obtain a I
normal ising factor. BI

iK

_ _ _S

FUNCTION ALPSET(KI,ALP1,ALP2,ALP3)

Function

ALPSET initialises the density function for virgin

strength, at , given the parameters defining the density

function for relative residual strength, X3

Parameter List

KI: Integer defining the type of density function (see

PDF).

ALP1: Dispersion parameter for X3"

ALP2: Lower limit parameter for X
-3

ALP3: Location parameter for 3"

"peration

The transformation from X 3 to Ge involves the use of the
scale factor Ro- which is stored in RMUO in the COMMON block

RMUO.

A heading is output on the primary output file so that

information produced by PDFSET can be correctly identified.

I
I
I
I

3 3;t 331,

FUNCTION BETCNG(RNSV)

Function

BETCNG allows the scale factor used for the evaluation of

pI(f) to be changed, according to the time value stored in

RNS VIN.

Parameter List

RNSVIN: Value of t which is to be used to set a new scale
factor.

Operation

PDFSET is used to re-initialise the density function py(y)

which used to generate pl(f) in PBETA.

If the scale factor is changed, the viable limits for 0 will

also change. Rather than call RANGE every time that a new tir.e

value is used, the limits are calculated approximately by

multiplying the original estimates (produced with t-l) by t.

-t

333
333

FUNCTION B3-TST(K1 ,B='1,HE?2,BET2)

-unction

BETSET initialises the density function for age, 8, given parameters

defining the density function for relative fatigue life, 4.
Parameter List

K1: Integer identifying the type of density function (see PDF).

BMI: Dispersion parameter for Xl.

BET2: Lower Limit parameter for 4
BE73: Location parameter for X.

Ooeration

The density function is initialised with t=1 so that no scale factor

is involved. This ensures that the limits which are computed following the

first call to BO7SET can be used by BETCNG to compute approximate limits for

other values of t.

Note that output to the primary output file is suppressed following the

first call to BETSETo

ii

I

3 -3ld. 334.

FUNCTION PALPRA(ARG)

Function

PALPHA evaluates the density function for virgin strength,

Parameter List

ARG: Value of a for which the density function is to be

evaluated.

Operation

PALPHA makes direct use of the function PDF to evaluate the

density which is assumed to be initialsed by a previous call to

ALPSET so that the appropriate constant are available.

II

, I

'I

FUNCTION PBETA(ARG)

Function

PBETA evaluates the density function for age.

Parameter List

ARG: Value of # for which the evaluation of the density

function is required.

Operation

PRETA accesses RNO in the COMMON block PARCOM to compute the

value of Y where,

Y - 1/(t-n O 0 1/(ARG-RNO) (5 47)

which is passed into PDT to . compute py(y) . The required
density for f is then given by,

P(= 2py(Y) X S~ (- no) ti /t)

-ARG1I*ARGI1*PDF (KBET, C , C2, C3, C4, ARG I)*SINSP(ARG)

00e (5.48)
The value of -n o must, of course, be non-zero. An error

message is produced if this condition is violated.

Error Messaxe

(i) 'PBETA ... ARG IS ZERO': PBETA has been called for

conditions leading to P-n 0 -0. Further processing is

terminated.

I

I
!A

336 33

FUNCTION PDF(K,C1,C2,C3,C4,ARG)

Function

PDP evaluates a probability density function, identified by

the first 5 parameters in the call, for the value ARC of the

random varaible X.

Parameter List

K: Integer identifying the type of distribution.

-1: Lognormal

-2: Extreme value

-2: Gamma

Cl: Dispersion Constant.

C2: Scaled minimum limit.

C3: Reciprocal of scaled loacation parameter.

C4: Constant incorporating the effects of normalisation
and scaling.

ARC: Value of the random variable for which the density

function is to be evaluated.

Operation

It assumed (but in no way checked) that prior to calling

PDT, PDFSET has been called to calculate the constants Cl, C2,

C3 and C4 which are stored by the calling code to define the

density function.

The value, ARG, of the random variable X is converted by PDT

to a standard random variable, , say where

Z -(ARC-C2)*C3. (54.9)

The density function for X can be evaluated using a standard

density function for Z as described in Section 5.3.4.

Currently, PD? recognises three standard distributions.

(i) losnormal

PX(X) - Pz(z)/(fs(t.-e)

= exp(-0.5*(log(z)/O-) 2 }/(f V',I'W oZ)

- C4*EXP1(-0.5*(ALOG(Z)/Cl)**2)/Z (5.50)

(ii) Extreme Value

C (x) - k*zk'i exp(zk/f(V-L))

- C4*Ti*EXP1(-TI)/Z (5.51)

where

TI - z . Z**CI. (5.52)

(iii) Gamma

pX(x) - z k'exp(-z)

- C4*(Z**(CI-i.0)*EXPi(-Z). (5.53)

I
I

r:25i

t 1

I

33 8 338

FUNCTION PDFSET(K,.FACT,CIN1,CIN2,CIN3,C1,C2,C3,C4, lOUT)

Function

PDFSET initiallses a probability density function by

calculating constants that can be used by PDT to generate the

required function using standard density functions.

Parameter List

K: Integer identifying the type of density function.

-1: Lognormal

-2: Extreme value

-3: Gamma

FACT: Scale factor for the random variable X.

CIMI: Dispersion constant, defined in terms of X.

CIN2: Minimum value, defined in terms of L.

CIN3: Location parameter, defined in terms of X.

Cl: Dispersion parameter for Z (Returned by PDFSET).

C2: Scaled minimum value (Returned by PDFSET).

C3: Reciprocal of scaled location parameter(Returned by

PDFSET).

C4: Constant incorporating the effects of scaling and

normalisation. (Returned by PDFSET)

IOUT: Integer defining output mode.

-0: Write information about the density function on

the primary output file (Logical unit 3).

-1: Don't write the information.

I
o I[1

q iN

Operation

The first section of code in PDFSET calculates the constants

C1, C2 and C3 according to the equations

Cl - CIN1 - k (5.5 4)

C2 - - CIN2*FACT (5.55)

C3 - 1/(f (v -e))

- 1.0/(CIN3*FACT-C2) (5.56)

The remainder of the operations are specialised according to

the type of density function being initialised.

(i) Lognormal

For the lognormal density it is assumed that the

dispersion parameter, k, has been specified in terms of

logarithms to the base 10. Conversion to natural

logarithms is effected by multiplying CINi by

1.0/log 10 (e).

The normalsiation constant is given by

I C4 - (1.O/'')*(l/(v,-es))/k

f- C3*CON/C1 (5.57)

I
(ii) Extreme value

I For the extreme value density function, the only

specialised operation is the calculation of C4, which

is given by

I}
[

'I 140 3/p.0

C4 - k/(v -e)

- C1*C3. (5.58)

(iii) Gamma

The normalisation constant for the gamma density

function involves the evaluation of r(k). This

evaluation is made via the function S14AAF from the NAG

library of scientific subroutines. (This is the only

function which is not supplied as part of the NERF

program.) Once this function has been evaluated and

stored in GAM the normalisation constant is given by

C4 - (1/f(k)).(1/(vs-e)

- C3/GAM. (5.59)

Note that provisiion has been made for the trapping

of error codes returned by S14AAF and that the Gamma

function is evaluated only when CINI changes.

In each case appropriate information regarding the densityfunction that has been initialised is transmitted to the

primary output file. If IOUT-1, this output is suppressed.

Error Messae

(i) 'ERROR IN GAMMA FUNCTION, IFAIL *****: The gamma

function routine supplied by the NAG library has

failed. For interpretation of the error code refer to

the appropriate NAG documentation. J

i7
'1

' ILI ____

1 3 * 1

FUNCTION PRNO(ARG)

Function

PRNO evaluates the density function for initial crack

length, a0 .

Parameter List

ARG: Value of a 0 for which the evaluation is required.

Operation

As no transformations are involved, the evaluation of

pa0 (a0 is made by a straightforward call to the function PDF.

I.I

ji

34 2.

FUNCTION RNONRM(FACT)

Function

RNONRM modifies the constant C4 used to evaluate pa (a0) to

include the effect of a normalising factor produced by the

calling code.

Parameter List

FACT: Normalising factor.

Operation

RNONRM effects the modification by changing the constant C4

which has been previously computed by PDFSET.

I!

FUNCTION RNOSET(Kl,A1,A2,A3)

Function

RNOSET initialsies the density function for initial crack

length, a0.

Parameter List

Ki: Integer defining the type of density function (see

PDF).

Al: Dispersion parameter for a0 .

A2: Minimum value parameter for a0.

A3: Location parameter for a0.

Operation

There are no transformations involved. The density in

initialised by a straightforward call to PDFSET.

.

I

I

Au ___

3'

5.4. The Evaluation of the Loss Factor

The reliability expressions involve the evaluation of the

loss factor term, R(o,P,not), which is defined, for cracked

structures, by equations (2.45) and (2.44) for initial

cracking and no initial cracking respectively. Both equations

involve an integration over e : because the loss factor appears

in the innermost integration of each reliability function

considerable savings in computational effort can be made if an

interpolation table can be employed to bypass the integration

step.

In many practical calculations, the loss factor term is very

close to 1.0, (which provided the original motivation for the

option for neglecting the term altogether, see Section 3.6.3)

and the expense of using full integrations for every evaluation

is not justified. The interpolation procedures described in

this section provide a good compromise between accuracy and

computational effort.

Although the loss factor is time dependent, indicating that

an interpolation table may require initialisation for each

value of time, itis possible to separate the time dependence

from an integral term which may be represented by an

interpolation table which is valid for the whole run through J
the time sequence. Moreover, it is possible to remove the

dependence on n 0 from the table which means that a given

interpolation table may be used for a wide range of

calculations using the same residual strength and probability

of load exceedance functions.

The separation of the time dependence is effected by writing

the loss factor in the form,

v(*,'nO,t) - exp{-t.G(sc,O,nO)) (5.60)

where, for the initial cracking class, fJ

G (ator 2 (0)dL (5.0 d)

and for the no initial cracking class,

r 2 p 1+ r (cc)Itj (5.62)

The dependence on n 0 is separated by defining

G*(,p) = r 2 (o., ')de' + [ti.r 1(001 (5.63)

so that

G(q",'n0) - -L [G*(L,g) - G*(o(,n 0) . (5.64)

The term in square brackets in (5.63) is included only when

n0=0, for which case G (a,n 0) in (5.64) is zero. With these
conventions, equations (5.63) and (5.64) are valid for all
classes of models.

For uncracked structures, the loss factor is given by

H(s,P,not) - exp(-r 1 (0)t}. (5. 5)

No integration is required and the term can be evaluated either

directly within the code which evaluates the reliability
functions, or as a special case of the code used to evaluate

G(,,n0). The latter facility is provided within the function
GVAL, described below, although there are some instances in the
NERF code where the loss factor term for uncracked structures

is evaluated directly. This special case is identified by GVAL
if n 0 =0 and - 0.

Another special case occurs in the initial cracking model

when f-no - 0. Considering the expression for G(w,4,n 0) in
(5.61)!

-73Il

lim G(,,,n 0) lim fr(..,)

lira r cc, d

t-"o Q 2 d

lir (m-n o)

lir r 2 (,c,)

lim 1

(by L'Hospital's rule)

= r2 (., n 0). (5.6)

The various forms for G(a,A,nO), in terms of G (.c,p) are

listed in Table 5.8.

Note that the special case no-O, f-0 and 'i-0 reduces to

either r2 (.,n0) or rI(sc) depending on the class of model. The

convention of assuming that f-0 identifies the no initial

cracking class is made by GVAL. (By setting ti to be at least

E, where E, is a very small number, in PSI ensures that GVAL will

never be called with P-0 for a cracked structure).

The loss factor evaluation is thus based on the use of a

single function called GVAL which is described below. A value

of the loss factor, R(-,#,nOt) is obtained via, I

R(OCOno,t) - EXP1(-RNSV*GVAL(ALPV,BETV)). (5. 7) 1

!
I'!

41

F>n 0 nofl

no > 0 - G*(.,n 0

(| --o)

3

no= 0 Gr ('no))

Table 5.8. Various forms of G(aij,n O) in terms of

GG4,O) for the different combinations of

values of and no.

3.4L9 34-

The exception to this is when an evaluation of 1-H(OL,f,not) is

-4
required and GVAL(sc,#,n 0) is very small, (< 10 say). In this

case, the series approximation to the exponential function is

used to yield

1-R(,&A,n 0 ,t) - RNSV*GVAL(ALPV,BETV), (5.68)

as used, for example, in FALP.

The function G (*-,O) is interpolated in (sA) space by

tabulating values of log(G (c,f)) and, getrerally, using

bilinear interpolation to yield log(G (g,p)) for intermediate

values of %C and P . Special interpolation procedures are

required near some of the boundaries of the interpolation

reg ion.

The function GVAL is described below. The structure of the

interpolation table and the methods of initialisation and

interpolation are described in subsequent sections.

*1

I

349 34.1

FUNCTION GVAL(ALPV,BETV)

Function

GVAL returns the value of the funtion G(ed,pn 0) for given

values of 4,0 and n0 (which is set in COMMON). The function

G(efo,n O) is used to evaluate the loss factor,

H(,,,noSt) - exp(- t.G(.,fno)} (5.69)

Parameter List

ALPV: Value of a for which the evaluation is required.

BETV: Value of for which the evaluation is required.

Operation

The function GVAL is primarily concerned with selecting the

special cases according to Table 5.8. The code is a

straightforward implementation of this Table.

The function GSTAR is used to obtain values of G*(ep) via

interpolation.

I

I

-

35-a 35o

5.4.1. Structure of the Interpolation Table

The limits of integration for the double integral terms in

pF(tn 0) and pfs(t,n 0) for the most general model (equations

(3.93) and (3.96) respectively) define the maximum possible

ranges for L and . These limits are,

(n'o) < <~ min) (5.70)

.* (n0) < S < S2(f,) (5ma7)

Allowing for all possible values of n0 and neglecting the

inspection boundaries, the loss factor interpolation table is

required to span a space defined by

S f (5.12)

and

max((emin, Rmin/Y(P)) _C .1 min (ax ,max/r(()) (5.13)

The nodal values of 4(and P at which the values of G Ge,)

are computed are arranged so that all the nodes fall within the

confines of the region of (d,o) space, defined above, according

to the following system.

The P values are set by the nodal values of y(A), together-1 -1 !
with the values, el le/), (R /0I) and

-S? (~ax max min min

(R tmin /Rmax) if they lie within the interval, (iff). Along

each P line, Kllm - values are distributed according to

following strategy. For the given value of m, say, atranges

from eL to s2 where,

-j maS.min, min lr(J)1 (5.14)

d. 21 in(eL SaR mx(P'()I~

2jma ax r
' I

The function G (et3) can be discontinuous across the line

a.- R .Because of this, this value of at is also included as amax

nodal value on each Q line. Note that the default limits for Ii
and tf, (equations (3.45) and (3.46)), ensure that

OL IJ . "max - 2JI thereby defining two subintervals

[OLJ,R max I and (Rmax , 2] In each subinterval, the aC nodes

are distributed uniformly with K1 +1 alpha values in the first
subinterval and K2+1 values in the second. The numbers K1 and
K2 are set so that,

K . (R - e - e')*(Ki- l) (5.76)

and K 2 = Kll m - K - 1. (5-77)

where ecin - (L (5.78)

and t' = max (at (5.79)
ax2j

Geometrically, this generates a non-orthogonal

interpolation mesh of the form shown in Figure5.11. The mesh

satisfactorily follows boundary curves across which the**

function G (*,f) can be discontinuous. In the mesh shown in

Figure 5.11 there are two points at which the mesh lines

converge. Such points cause no difficulty during

interpolation: the table simply contains several identical

entries representing the same point but different mesh lines

and since inverse interpolation is not required, the

degeneracy can be easily handled. In general, there are three

such points corresponding to the following conditions.

OL a ' t= ; (5.80)

- --

I IiIIlllilmIl l / ma (581

.3.. 5Z32.

Asnat

I 'I

I I/I

I / /
I I I

I - - - - - I

O 1

Figure 5.11 Construction of a typical lo88 factor interpolation

mesh. The mesh is constructed using the N nodes

intused to define f The @Lnodes have Ibeen 11
selected according to the strategy described in

the text; for simplicity KI and K. have both fl
been set to 4, with Klia 9.

I3I

O max' r(Rmilot.~). (5.82)

The definition of the mesh may be considered in terms of a

mapping from the variables ep to two mesh variables RK,RJ

where RK and RJ have values in the intervals [1,XlimI and [1,N]

respectively. (N is the number of nodes in the sequence of

ordered pairs defining ir(6), including the three special

values defined above and inserted by SETTAB.) In the mesh

defined above, lines of constant RJ correspond to lines of

constant . If f lies in the interval [, Fj+l RJ is given by

-i e1)'(Pj+1 -Pj)- (5.83)

Conversely, is given by

03 + (pj l - Pj)*(RJ - J). (5.84)

The relationship between e and RK is a little more complex.

Given K and K2, it is clear that for all , the line

RK - KI + 1 corresponds to the line

OL Sep = max(*i n ,min{(Rm a ax . (5.85)

Hence, given (ac,p) , RK can be computed via the following steps.

(i) Compute o ow max({ Min, Rmin/IV()} (5.86)

and 'ohigh - min{aKmax,R max/IV()}. (5.87)

(ii) If t > aSep;

RK - (low) high low)2 (5.88)

I

I f [. .

where atI - max{ (' }. (5.89)low seplo

(iii) If a < R ;
-max

R K - I + (O - o/(e p)*E1* (5.90)
1K-I+ ~low sep low 1

In (ii), if Odhigh - se6 , <E, RK is arbitarily set to K1+1.

In (iii), if Il*sep - lowI <, RK is arbitarily set to K1 +l.

Conversely, given RK, &C can be computed via the following

steps.

i) Compute wlow' Shigh as in (i) above.

(ii) If RK > K1+1;

low ' hSigh - iow) (kK'1)/K + l ow (59 1)

(iii) If RK < Kl+l ;

d. . low + (asep " ow) ' (RK - 1)/K 1
+ low" (5.92)

The above equations completely specify the transformation. 1
Note that constant RK lines do not necessarily map into

straight lines in s,0 space, but follow curves dictated by -f

A typical interpolation mesh generated by this logic I

is shown in Figure 5.12. 1

A U,

Fiur 5.2 i al los fato ineplto mesh.

(m A K S0.0=

lm.B - T-

Fiur 512 ypca.-8 "ato i.tr_ laio- -h

(EamleA. -K,~3

I-"

iiW.

___II__I__I U

FUNCTION ALPTAB(RK,ALPLOW,ALPRIG)

Function

ALPTAB returns a value of W corrsponding to RK for the line

denoted by ALPLOW, ALPHIG where

ALPLOW - max{.min,Rm[n /fi(§)) (5.93)

ALPHIG - min{.e maxR /,(o). (5.94)mxmax

Parameter List

RK: Value of RK for which the o value is required.

ALPLOW: Lower limit for .L on the line.

ALPRIG: Upper limit for eC on the line.

Operation

Broadly, ALPTAB executes the transformation defined by
equations (5.91) and (5.92) where (5.86) and (5.87) have been
set by the calling code to produce ALPLOW and ALPHIG.

Using the notation of Section 5.4.1, ALPTAB assumes that the

following constants have been set.

RK1 - K + 1 ; K1 - K1 +1 (5.95)

ALPSEP - AMAX1(ALPL,AMIN1(ALPR,(M)) (5.96)

where

ALPL - l (597)
min

and
ALPH - d e

(5 8)
max

Ii

RKIH1 K1 5.9

RKLM1 - K 2. (5. 100)

Then if RIC<Kl, ,* is given by equation (5.92), i.e.,

ALPTAB - ALPLOW + (ALPSEP - ALPLOW)*(RK-1.O)/RKLI41. (5.101)

If RK>Kl, akis given by equation (5.91), i.e.,

ALPTAB -ALPL2 + (ALPUIG - ALPL2)*(RK-RK1)/RKLMI (5.102)

where

ALPL2 max{ALPLOW,ALPSEP}. (5. 103)

K

3:5-

FUNCTION INITAB(DUM)

Function

Function INITAB initialises the constants required by

functions ALPTAB and RKTAB. No function value is returned.

Parameter List

DUM: Dummy parameter. (The dummy parameter is required

because INITAB is an entry point in the function

ALPTAB. In an instalation where entry points are not

permitted INITAB could be rewritten as a subrotuine.)

Operation

Given the constant KLIM (Klim) , the number of K nodes, the

following operations are performed by INITAB.

(i) Compute ' m min (o (j)) - ALPL. (5.104)rmin

J

(ii) Compute. max1 a max (e42 (j)) - ALPH. (5.105)

(iii) Compute aint " ax rmin)/(Klim- 1) (5.106)

(iv) Set ALPSEP - osep - R aax" (5.107)

(This value may be overwritten below.)

(v) Calculate KI;

If 0(sa p < 4min; KII, (KINO). (5.108)

if at > . ; Kl-KLIM+ , (Ki-Kii). (5.109)
sep - max -I

Otherwise, in accordance with equation (5.76), H

. I i
l ,ll',,Immesmmu nu~annnnunwn~immmlKi1

KI - integ((sep - low) / 0 n t) +1,

- IFIX((ALPSEP -ALPL)/ALPINT + 1. (5110)

(vi) Set the following,

RK Ki - K1 +1 (5.111)

ALPSEP - !sep maX(alow ' m n (& -h i ' R ma x)) (5.112)

RKIM1 - K 1 - U-I (5.113)

RKLMl - K 2 - RKLIM-K1 (5.114)

TEST - EPS2*ALPSEP (5.115)

where EPS2 is a small number close to machine accuracy. (Test

is used to trap cases where lm-Cse p in RKTAB.) IlfK 1 Klim + 1,

K2 a 0 and K 1 is incremented by 1 to prevent ALPTAB from2

entering the section of code associated with theao nodes having

*Lgreater than
sep

I

f

I
*I"

I

~3 ,o

FUNCTION RKTAB (ALPVAL,ALPLOW,ALPRIG)

Function

RKTAB returns the value of RK corresponding to *L for the

line denoted by ALPLOW, ALPRIG where

ALPLOW - max(sminR mi n] (i)}, (5.116)

ALPHIG - min{"max R a /v()}* (5.117)

Parameter List

ALPVAL: Value of *L for which RK is required.

ALPLOW: Minimum value of at for the line.

ALPHIG: maximum value of a for the line.

Operation

Broadly, RKTAB executes the sequence of operations

described by equations (5.88) to (5.90).

Using the notation of Section 5.4.1, RKTAB assumes that the

following constants have been initialised.

RKI - K1 + 1, (5.118)

ALPSEP - max{*low,min(4fbighRmax} (5.119)

RKL1M1 - K 1 (5.120) I

RKLM K K2 - (5.1.21) i

Then if *(< ep' RK is given by equation (5.88),

RK - I + (ALPVAL - ALPLOW)/(ALPSEP - ALPLOW)*RKIMI. (5.122) j1

i i 361

If 4.> at sep, RK is given by equation (5.84),

RK - RK1 + (ALPVAI - ALPL2)/(ALPRIG - ALPL2)*RKLM1, (5.123)

where

ALPL2 - AMAX1(ALPSEP,ALPLOW) = " (5.124)

If the denominator in either expression is nearly zero, RK -

RKI is returned.

I

I
I

Io

362.

5.4.2. Initialisation

The loss factor interpolation table is initialised by

subroutine SETTAB which was partially documented in Section

5.2.1. This description of the initialisation of the loss

factor completes the documentation for that subroutine.

The first operation associated with the loss factor

interpolation table is the calculation of the a limit arrays

which contain the limis 6ij and e2j (equations (5.14) and

(5.15) respectively) for each value of fj in the sequence of

ordered pairs defining 10).

Following the calcluation of thee arrays, the number of

intervals in c, Klim , is set according to the space available

in the C array in COMON block GCOb. Currently, Klim is set to

the minimum of 33 or 2500/N where N is the number of Oj values.

The table is initialised by the nested DO LOOPS terminating

in statements 140 and 150. They sweep through the values of

and e(values corresponding to the mesh nodes of the

interpolation grid described in Section 5.4.1. (Note the use

of ALPTAB to effect the mapping from integer values of K too.)

The table, as stored on disk, contains values of the term,

log(~r 2 d 'd f'/1 r)

so that the table is independent of the parameter 1 r and the

state of the VIRGIN switch. Accordingly, the VIRGIN switch is

cancelled and value returned by RINTV divided by Ir . On

completion of the table initialisation the VIRGIN switch is

restored to its proper value. The logarithm is taken by the

function LOGI which ensures that a zero argument value results 1

in a known value of -80.0 for the logarithm. This fact is used

by subsequent code to detect mesh points where the integral

term is zero.

I
I

-- _ L mm mmmmma ama mmm m L•!

Iw

3343

I Once these table values have been calculated or read from a

disk file, they are updated to include the factor 1 and the
r

term r1 (d)ti , if required. This is done by the DO LOOPS

terminating at statements 250 and 260.

SETTAB provides for the construction of contour maps of the

'G integral' as written to disk or the 'G function'

(G(e,A,n 0)). The latter is computed in an obvious way by the. DO

LOOPS terminating at statements 280 and 310.

The subroutine NODES and the functions RINTV and RLGAM which
are used to evaluate the table entries are described below.

(.

AL.

SUBROUTINE NODES (GAMMA,IK)

Function

NOUES determines the limits of integration and the nodal

valaues of for the integration term,

Term = I r 2 (or(f')dt' . (5.125)

Parameter List

GAMMA: Array into which the nodal values of are returned to

the calling code. (The limits of integration are

returned as GAMMA(1) and GAMMA(IK).)

IK: On entry, the number of storage locations available in

GAMMA.

On exit, the number of nodes placed in GAMMA. If IK-0,

the integral term is zero.

Operation

The nodes for $ correspond with the f values used to define
f(q) and the equivalents of the R values used to define r2 (R).
The nodal values for (f) are stored in the array BETA in the

COMMON block PSICOM. The second set is obtained frLm the R

nodes stored in the array R in the COMMON block LOADCM via the

relationship,

e-1 (R/4L)

- PSINV(R(I)/ALPV). (5.126)

The limits of integration are defned by,

-1 /*L) < F< min(A uY71 (mn*) (5.12 7)

The required sequence of values is produced by merging these

, II

I

two sequences subject to the vignetting specified by equation

1 (5.117), using the subroutine MERGE.

Note that if y(#)2_R max, the integral term is zero and a

value of 0 is returned for 1K.

COMMON Variables Changed

ALPV: Current value of K.

BETV: Current value of

I

I

* I
1

. I

393"

FUNCTION RINTV(ALPV1,BETVI)

Function

RINTV returns the value of the term,

RINTV - r2 (-1r())dP' + Cr i 1 (5.128)

for given values of sk and . The term in square brackets is

included only if the VIRGIN switch is on.

Parameter List

ALPVI: Value of a for which the evaluation is required.

BETVI: Value of f for which the evaluation is reuqired.

Operation

After setting the current values of ALPV and BETV in the

COMMON block PARCOM, subroutine NODES is called to ascertain

the limits of integration and the nodal values of P, to which

the integration procedure is to be locked. (See NODES for

details.). The adaptive integration routine ADAPT2 is used to

evaluate the integral term.

Note that this function can be used, if required to replace

the interpolation procedure for evaluating the functionG

Internal storage allocated for the GAMMA array is currently

set within RINTV to 150. 1

Ii

!tfK
&I

I 3IIl IIl

I FUNCTION RLGAM(ARG)

Function

RLGAM returns the value of r2 (ef()) given a values of

(ARG) andaL(ALPV in COMMON).

Parameter List

ARG: Value of e for which r2 (-'f(f)) is required.

J Operation

RLGAM uses the value of ALPV in COMMON block PARCOM to

calculate ARGI-40(0) which is used, in turn, as the argument of

RLOAD to return the required value of r2(S,(0)).

J

I

* 4
*

5.4.3. Interpolation

The loss factor table contains values of log(G (o,p)) for

values of W_ and distributed throughout (,, space according

to the scheme described in Section 5.4.1. Denoting the Ovalue

correpsonding to RK-k on the line #j byCk, the table entries

can be denoted by LGJk where

LG jk = log(G *(atkJ))
(5.129)

The function G* (',) can vary rapidly with ocand 0 and direct

polynomial interpolation was found to be inadequate. In

particular, small oscillations in the interpolated function,

although not significant in terms of the overall accuracy of

the reliability functions, were found to require excessive

effort by the adaptive integration routines to achieve

convergence. The procedure finally adopted is based on the use

of bilinear interpolation for the function log(G*(,,)).

Interpolation is made in theA direction first. (Note that the

mesh is non-orthogonal: the sequence of interpolation can

affect the final interpolated value.)

For given values of .4 and 0 such that k<RK<k+l and Oj1< j 1

where RK corresponds to o for the line 0-1 the interpolation

in the o direction yields two values, LG1 and LG2, of

log(G (.,)) at the end points of the line having the given

value of RK, (see Figure 5.13). The relevant equations are,

L I M LGJ,k + (LGJ,k+l - LGj,k)*(RK-k) (5.130)

and

LG 2 - LGJ+l,k + (LGJ+l,k+l - LGJ+l,k)(K-k). (5.131) 1

Interpolation in the direction yields, I
II

• H

|I I

I I i 9

34?

I ,LG jo" -s-"-)

- j p . Lj$,

i / 11k.

II

theLj~ losfco\al,(e qain

at"v.14".

.1G

L (I,.

F-T JI. a

II

Figutre 5. 13. Notation used during interpolation of
i the lose factor table, (see equatiLons

(5o130) and (5.131).

mmmm miim Illm l lmll~lln m El III

I

370

G , exp{LG 1 + (LG2 - LG)(- oj)/(fj+l - fj)}.(3.132)

The use of bilinear logarithmic interpolation does, of

course, require careful consideration in regions surrounding

points where G (c,p)-0. Fortunately, the form of the function

G (of,) (equation (5-63)) is such that these points are

confined to easily identified boundary locations and special

interpolation procedures can be devised and incorporated into*

the overall scheme. The conditions leading to G (o,o)-0 are,

, Rmax (5.133)

f i or VIRGIN - false (5.134)

and

~iL fort L (5. 135)

where EL is the small number used by PSI to set a minimum value

for -ti"

The procedures associated with each of these special

boundaries are described below.

i) -,'(I) - R

The condition *I = Rmax corresponds to

02j = Rmax/,e (f) and applies only to * values having

RK-Klim. It is appropriate, therefore, to consider the

treatment of this special condition when interpolating

in the direction along the nodal 0 lines (#-j say). A

special interpolation formula is required for4L < &L< o and G (OL j)=0.
K lim- 1 lim lm

From the structure of the interpolation table, if

Ki r (Pj)=Rmax , thnRmae • ,Consequently, the
lim lis

points of intersection of the linesat=and-e im

I1

3 7/3-

with .A ()-Rmax yield values of and im

respectively, where

= (Rma x/A) (. 136)

and

lim max K im-1

such that and 'K I are both greater than ti, (as

shown in Figure 5.14). The function G(,p) is

therefore given by

r , - r 2 (a, ')dp' (5-138)

which can be approximated by

*. =C.r 2(oyD(,j))-j -r)" (5.139)

On p-fj, r2 (s,O) can be represented approximately
by

log(r 2 (*,#j)) 2z log(r2 (atK li, j)

lim ha ha+ (at - OCK im.1) / (-Kl i m- OXl i m- 1)

*log(r 2 (Rma x)/r 2 (*LK ,4j)). (5.1140)

Equations (5.139) and (5.140) can be combined to

I yield

log(G*(s,.-j)) I log(C) + log(I -

+ log(r 2 (C K , 1 + ("-'(f -"K 1)

3 im- him- h im liup
l .log (r2(R)/r2 (At _,P)).

2 max 2 Khim 1
.... (5.141)

iI
I-Ill Ill

Figure 5.14. Notation used to interpolate in the aLdirection

on the line in the vicinity of the line

max '(~)

I
~373

By enforcing continuity at (-K I

log(C) - log(G *(aKi j

- log(Fj - K lim) - log(r 2 (-.Klim. IJ)), (5.142)

so that

log(G (a,,j)) LGK lim-1i + log((PJ - '/(p- KlimP)

+(0()L/ - at
K Klim. I /(Klim Klim- I

*log (2 (Rmax)/r 2 (a Klim -l 1 j

(5.143)

(ii) O=L for VIRGIN - false

The case of G* (4L,) - 0 at " can be considered as
a special case of interpolation in the P direction.
Given 1 and F2' the end points of the RK line

corresponding to (tO) can be denoted by (s' 01) and

(2,2' Y ' The corresponding values of log(G (,)) are

LG1 and LG 2. This special case corresponds to an

infinite value for LG1 . (In practice the logarithm

function ALOGi will return a value of -80.0 for a zero

argument.) Note that that generally yO(O)C in the

vicinity of -t i so that over the first interval in ,

The special interpolation function for this case can

be found by generating a linear interpolation formula

for log(G (a,P)+C) where C is a constant which is found
by looking closely at the form of G*(-,a) as P -Vi"

I The linear interpolation equations leads to

G * , - exp~log(C) + ("0"01-92)

*log((exp(LG2)+C)/C)) - C. (5.144)

I'i; 2
I ili i lI •

4 14,1 NiR (OMPUIIR PROGRAM fOR IMI NUM(RICAt (VAIUA I I 5/1
(11 RiIlAB~ T LI N 111 A(RONAU ICAL RISIARCH LABS

MI B URNI 1AUIRA Al G0 MAIIINSO It Al SIP 83

%" l 1) R SI M 14 1 /(, 12 N1

IIIIIIE i Un'1

1.02

Sus

Il

II

Noting that

j..G*(,O) = r 2(-'C) ,
40

r 2 (Gy() -C* (a, 0)+C) log (G* (at2 , 02)+C)/) / Q 2-01)

....... (5.145)

so that,

r 2(0(2 02) = (G* (A 2 '02)+C
) log((G*.(4 2 ,f 2)+C)/C) /(P 2 -P 1)

and
r 2 (0 1101) -C-lo9 ((G*'AP2C))/2fj

and finally

C - G* (at2)r 2('11) /(r 2 (.9 2 , 2)-r 2 (.',4 1))

...... (5. 146)

The special interpolation formula is given by equation

(5.145) with C defined by (5.146).

'S

If r 2 (OC1 ,0)1)tr 2 ('2 2 , 2), then G(4,f,O)constant and

G (can be interpolated via,

G(,p) - exp(LG 2)*(- 1)/(f 2 -f 1). (5.147)

If 0, G (w)t 0. An appropriate formula for

G (d~f)over the first 0 interval may be generated by

assuming that G(atM,) varies linearly from 0 1 to 12 .

Trom equation (5.66), 11
±li G(S,4,O) - r 2 (g,) (5.148)

I'

Iand by definition,

G (O, 2 ') G*(.d)/ (5.149)

The assumption that G(et,0,0) varies linearly over

the first interval leads to,

G *) - r 2 (o,0).4 + (exp{LG 2 } - 2.r2(*', l)).2 2.

...... (5.150)

The interpolated value of G* (s,) is provided by the

subroutine GSTAR which uses the function GALP to obtain the

terms LG 1 and LG 2 representing interpolations in the ae-

direction.

..I.

~ I

FUNCTION GALP(J,RK)

Function

GALP returns the value of log(G (-,P)) corresponding to a

given nodal value of , , and a given value of the at index,

RK. This value of G(0,) is obtained via interpolation in the

a direction.

Parameter List

J: Value of j (corresponding to Oj) for which the

evaluation is required. Note that GALP can provide

interpolation along fj lines only.

RI: Value of RE for which the evaluation is required.

Operation

The default interpolation procedure is a simple bilinear

procedure using equation (5.130), i.e.,

SLG + MG k1- LG)*(RK - k)

= G(JE) + (G(JK+W)-G(JK))*ALPFAC. (5.151)

If JK-Klim, then the function GALP returns the value of

If LGj kl<-8 0.O , then G k is zero and the special

interpolation procedure identified in (i) of Section 5.4.3. is

invoked. This interpolation formula (equation 5.141) is
evaluated by the code following statement number 40.

If LG .- 80.0 and LGj k1-80.0 , a value of -80.0 to

I LOJ,k+1-~vu

returned to indicate to the calling code that G (ar,f) is zero.

H

Sianificant Local Variables

K: Largest integer less than RK, (-k).

G: Two dimensional array contain% the values of LGJ, k

JK: Index variable for G. JK-J+(k-1)*N where N is the

number of j lines in the interpolation table.

ALPFAC: RK-K.

BO: fj, the value of the current line.

rDItF: bj -

SI

I
|A

33.?

FUNCTION GSTAR(ALPV,BETV)

Function

GSTAR evaluates the function G (ae,e) for given values of

and

Parameter List

ALPV: Value of a for which the value of G (4,) is required.

BETV: Value of # for which the value of G (af) is required.

Operation

The operation of GSTAR follows the logic shown in Figure

5.15.

Given ac and # , the first operation associated with the
,

evaluation of G (ae,f) is the examination of the location of the

point (.,CA) in relation to the region spanned by the

interpolation table. The following actions can be taken.

(i) If -6r(P)>R max, G (4,P)-O and no further action is taken

by GSTAR.

(ii) If v is such that RK<I, G (,p) is set to the value

corresponding to RK-1.

(iii) If RK>Ki +., then the evaluation is considered to be

illegal and an appropriate error message is issued. If

K i <iK<Klm +1, GSTAR returns the value corresponding

to RK-K lim.

(iv) If > is out of range and an error message is

issued.

GSTAR controls the interpolation in the f direction and
relies on GALP to provide the values of LG1 and LG 2 which result

from interpolations in thee.direction. The logic within GSTAR

is associated with identifying the special conditions and

. .

6A0

It
<

Coe.

ItiIj ,IT
Figue 515.Lom ued by the fucinOTR oeau

380

determining the appropriate interpolation formula as detailed

below.

(i) if f.f, no interpolation in 0 is required. A single

call to GALP is used to caculate G

(ii) If LG2.-80.0, (exp{LG 2)-0), then GSTAR returns the

value 0 for C

(Iii) If LC <-80.0, then the special case (ii) in Section

5.4.3. is identified. Equations (5.14 4) and (5.146)

define the interpolating function. Note that this case

can occur only for J-i.

If, for this special case, r2(O1, P) r2(42

G (M,) is linear over the 0 interval and (5.147) is

used.

(iv) If P1% 0, special case (iii) in Section 5.4.3 is

identified and equation (5.150) is used.

The coding associated with each special case and the default

interpolating function (5.132) is a straightforward coding of

the relevant equations using the various local variables
defined below.

Simnificant Local Variables

pSIV: r(f)" *
RV&L% st,<p).-

ALPV1: "aow (equation 5.86). Also used to store dt1 for

(5.146). 1
ALPV2: 'high (equation (5.87). Also used to store s-2 for

(5-*147).1

RIK: OL index for interpolation table. (See Section

5.4.2.) ..

I 381

B2: 1J+"

Gi: LG1 , equation (5.129). Also used to store log(C) for

(5.144).

G2: LG 2 , equation (5.129). Also used to store

los(G (*O(2 , 2)+C) for (5.144).

R2CON: r 2 (.d(tj))*0j+i, (used in 5.150).

BD32: f/lj+1' used in (5.150).

RI: r 2 (@.1 ,fl) for (5.146).

R2: r 2 (t 2 . 2) for (5.146).

A: (r2 (kifl)-r 2 (f2 2))/r2 (oil 1) for (5.146). Also

Iused to store C for (5.144).

I Error Messages

(i) 'GSTAR ... 19***, *,*** IS ILLEGAL': The point (at,) is

such the RK>Kii,.

(ii) 'BETA OUT OF RANGE IN GSTAR': The value of is greater

than the maximum node for ?0(f), (i.e. tf).

II

I

5.4.4. Special considerations when including virgin risk

The term in square brackets in equation (5.63) is included

only when the VIRGIN switch is true. This term, ii.r1(04) is

non-zero for R <Rmax and zero for o>R max This means that

the function G *(,#), and hence G(LVnO) can be discontinuous

across the line 0t-R
m ax

In FBET, this discontinuity is avoided by breaking the

integration over O. into two sections, ('Cmin R max and

(R M Imax1
. As initialised, the loss factor interpolation

table provides correct estimates of the loss factor for

integrations over the first section. However, to comply with

the requirements of integrations over the second section, the

term i~ r1 () must be removed from the line of table entries

corresponding to&LiR

This facility is provided by the subroutine GADJST which

adjusts the line of table entries according to the a.sectiou

being integrated.

[1

__ __

3 93Z'3

SUBROUTINE GADJST(NO)

Function

Subroutine GADJST adjusts the loss factor interpolation

table to enable the integrations made by function FBET to

correcly cope with the discontinuity that can exist across the

line o-Rma x when the term representing failures of uncracked

strutures is included.

Parameter List

NO: Control parameter.

>0, the term tir (oL) is added to the table entries

along the line -Rmax
m ax

<0, the term tir (a) is subtrlacted from the table

entries on the line -Rmax*
ii Operation

The first time GADJST is called, the term rl1 c()i is

evaluated (and stored in FACTOR) and the index value 11

corresponding to the line -R max is determined. This index

value is converted to an offset for the G array which contains

the values of LGj

If NO>O, the following equation is applied to the entries in

G corresponding to the index KI.

G(J+K1)-ALOG(FACTOR+EXP1(G(J+Kl)) (5.152)

If NO<O, the equation

G(J+Kl)-ALOG1(EXPI(G(JK+Kl))-FACTOR) (5•153)

is applied.

Note that no check is made by GADJST that NO changes sign

with each successive call. It is up to the calling code that

GADJST is used correctly.

5.5. The Evaluation of P t(.t)Pdot(t).r,(t) and

5.5.1. Overview

For a given model, the re~abiLity functions involving

the most levels of integration are P (t), Pdet(t) and

r s(t) and it is appropriate to consider the evaluation of

these three functions together. In fact, the a 0 integrand

functions and the limit expressions for these functions are

sufficiently similar that much of the calculations can be

handled by a common set of subroutines and mutual consideration

of these three functions becomes more than mere convenience.

Whon applicable, the evaluation of the virgin risk,

r v(t) involves a similar number of levels of integration and

some of the calculations can be made by the routines common

to the three functions referred to above. It is therefore

appropriate to include r v(t) (albeit as a slightly special

case) with the functions described in this Section.

The four reliability functions considered here include

at least one term which has the general form,

a(n2)fa (2T(n2)12 pp(04 P(.)I('P'no't)d~d'dao

T(t) a(n,) p so (aO p)

.... (5.154)

(where T(t) indicates the appropriate term in the reliability j

function and I(.,f,no,t) the relevant integrand function.)

386

This term can be considered to be composed of the following

nested integations,

T(t) = F oao)ao (5.155)

a(n 1)

where a a p.,.(,) (5.156)

The form for this term)as described above, applies to the full

model in which all the random variables are included. If any Voric=Lbt.

in neglected then the appropriate Integration is replaced

by a point evaluation of the integrand and the associated

density function is in not included. For example if a, is

held constant, acon say,

ST(t) - FO(a,(o) (3.759)

and F 0(an) j F (§)d6 (5.160)

I The code structure required to perform the integrations

(neglecting random variables where necesary) can be represented

I schematically by the flow cAart in Figure 5. 14 which has

V.!

f161
ti
ZL1

-. -Figure 5. 16. Code structure required to perform multiple
integrations, See text for Intertotat@a.

19

f been constructed according to the following scheme.

I (i) Logic flow can be either forward (top to bottom)

f or reverse (bottom to top).

(ii) Initial entry and final exit-from the logic is at the

top of the diagram.

(iii) Small boxes indicate evaluation of the term within

the box, only when the logic flow through the box

is forward.

I(iv) On completion of the evaluation of the function in

the lowermost box the logic flow direction is

reverse d.

(v) Large boxes indicate the adaptive integration

control routines which can direct logic flow

in both directions. Integration limits are

indicated and are assumed to be evaluated each

time the box is entered from above.

(vi) Diamonds Indicate decisions which can affect logic

logic flow only when approached from above. Reverse

flow passes through these diamonds a.s if they did

I not exist.

j(vii) Rounded boxes indicate control points associatedI with the evaluation of the three levels of inteprand

.368

functions (FO(aO), Fq() and FL()). Logio between

two control points is associated with the upper

control point and is included in the routine which

bears the name included in the box.

The control points have memory in that reverse flow

is directed along the same path as the box was entered

during the previous forward flow. This concept is reinforced

by using two-way arrows to indicate the links between the

adaptive Integration routines and the integrand function

control points. This implication is that the integrand

evaluation is under the control of the adaptive integration

process. A one-way arrow terminating at a control point

indicates a single evaluation of that integrand function.

A broken line links that arrow with the return flow

following evaluation of the integrand.

The diagram also indicates the flow of information

relevant for the estimation of errors associated with the

adaptive integration procedure. The error estimation process

which was described in Section 4. 1, relies on the integrand j
functions producing error estimates for the evaluation of

the integrandso In a nested process these error estimates -

are produced in turn by the embedded adaptive integration

routines used to evaluate the intep'and functions.

The inclusion of an error variable as an argument of

an integrand function control point indicates that It is the

function of the logic below that point to produce that error

nSn

II

term which will be used by the adaptive intigration algorithms

above the control point. The overall error estimate for the

evaluation of the reliability function is produced by the

outermost adaptive 4ntogration routine.

The code used to evaluate al1l the reliability functions

follows the general procedure described by Figure 5.16, with

minor modifications (such as the *missLon of levels of

integration or the inclusion of extra terms) as the need arises.
The descriptions that follow highlight these differences and

provide specifications for the integrand function routines,

which, in general, will differ between reliabLlity functions.

For the functions described in this Section, the only

integrand function routine to change between functions is

the outermost routine, denoted in Figure 5.16by F4. FMT and

FALP are common routines which access various logical switches

and control variables to ensure that the correct forms of

the integrand functions for a given reliability function are

evaluated. The relevant variables and the meanings of the

values that they may have are listed in Table 5.9 . Note that

if a single value of a logical switch is listed, then the other

possible value ('true' or 'false') has the opposite meaning.

Note also that the last three variables in the table are

associated with graphics operations which are described in

SSectiLon S.et 0.

* Because the switch BETOON is used to denote that Xis constant
and to all intents and purposes (i. also constant, this case

will be sometimes referred to as ' c constant'. .

i4

390 3?,0

Name Type COMON Value Meaning
Block

ALPCON Logical I1CON True Variations in strength
(4) are ignored.

BETCON Log cal 0NTCON True Variations in fatigue
life are ignored, f is
constant.

EJOCON Logical INTCON True Variations in initial
cradc length are ignored.

POPLOS Logcal LOGCOM False The effect of the lose
VcTfactor is ignored.

FULSV Logical LOGOOM True Pa(t) is calculated via
the integral expression
for P (t).

False PS(t) is calculated via
appro ximate integrationof r(t).

RIS Logcal LOGCOM True Current reliability
function is r 5 (t).

VIRGIN Logical LOGCOM True Current model includes
risk terms for uncracked
structures.

INSPTS Legical LOGCOM True Current reliability
functions are affected by
a previous inspection.

CONTON Logical ITO01 True Contour plots of integrands
are required.

PLTINT Logical INTOON True Integrand plotting is
activated.

BOUT Integer ITON 1,2 Level of outermost Integr-]
or 3 ation. e.g. 1 implies that

the outermost integration
is that controlled by
ADAPTO in Figure 5. U

Table 5.9. Variables associated with the control of the logic
for the evaluation of the reliability functions.

'391

I

The probability of failure is given by equation (3.80),
a(zd,

P!(t) j P-t-n°)poa°)do P(a(n2)) (5.161)

where PF(t,,n) is defined by equations (3.93), (3.116), (3.135)

and (3. 159) depending on the model class. These equations

are summarised in Table 5.10.

Using the notation of equations (5.154) to (5o15

and using FRLTO(ao) to replace FO(a 0), the set of equations

determining PF(t) are equivalent to the system,

1(no) tf(az n

FRT(a)" [Pa(s)][0"(no) F f()df +; 1 p()d (5.162)ti(Bmin)

Mn ff J'C'ain

% 3SO .J00 - H(~I0, not t)) (5.164)

where, for the present, the terms representing the failures

of uncracked structures have been neglected. The square brackets

around the density functions Indicate that the functions are

included only when variations of the associated random variables

are Included in the model.

31 ? z

Probabilityv of Failure

PF f P7 (t,&0)Pao(a0)d 4in0 'P (a

model J! r(tiuo)

fu (Bjn) 2(s~z

run (''o~ 1--r(Ro8#t0)p, (A, f

orTfmn) C~u0 9 o4 1.e pV.r1 .L0 I zjr(t)t .C (4c

~6 aflsC. f (da*) ~ac
Lcomt. (n) of

o + 9zL(n i)tI*p-j(ot) ma: a

Table s PIAO Iumr of-pEaaioafo theo pobab)ds +ilt o al, n 1 t

0I

I

Equations (5.164) to (5.164) together with the logic

described by Figure 5.17 are equivalent to the got of equations

presented in Table 5.10 (neglecting the uncraced terms). The

Figure follows the conventions established in Section 5.5.1

and includes the extra terms which represent structures that

have reached thef subspace, (or time-zone of failed or rejected

structures).

The logic above the FRLTO control point is contained

with the function RSKTOT which is described in Section S2.2._.

The remainder of the logic is handled by the adaptive integration

routines together with the functions FRLTO, FBET, FALP, PBETA

and PALPHA. A summary hierarchy of these functions is presented

in figure 5,.18.

The contributions from uncracked structures are

included as correction terms by the function FRVO, described

in Section 5.5.4 below.

When evaluating P (t), the logical switches, RISK and f

* fFULSV have the values 'false' and 'true' respectively. These

switches are used by the functions FET and FALP to ensure that

the correct integrand terms are evaluated.

The accumulation of the error estimates is largely

controlled by the adaptive integration routines as described in

Section 4.1.5.

-4

39A 94 Pr

404sta A' 4.. 0-.

ILLI

Figure 5.17. Logic associated with the evaluation of P Wt

29 6OT

ASAf 4M

F &r

C4P Fi

II~rPgr

Figure 3. 18. Hiearchy of function sub-prograS used to

1 evaluate P,(t).

:4

5.5.3. Risk of Static Fradtre by Fatigue

The risk of static fracture by fatigue is given by

equation (3.84), i.e.,

a(Zn)

rs((t:~a(Pfs(t 0)P,0 (aQ)ds%/PS(t)9 515

together with equatioas (3.90), (3.119), (3.138) and (3.162)

for the various classes. These equations are summarised

in Table 5.11 and can be replaced by the set,

FPSO(aO) Pfs(nott)Pao(O)

'*f(Stin)

a 2(,Rmax)

and)) (5.168)

together with the logic illustrated in Figure 5. 16. (with j
FPSO replacing FO), Noting that (5.166) is equivalent to the

firsts term in (5. 162) r(t) can be evaluated using FRLTO

FBT and FALP using the switch RISK to remove the extra torms

as required. The function hierarchy is shown in Figure 5. 19.

The logic above the control point FRLTO is controlled

by the function REKTOT. (1 ,

.39.17

Risk of Static Failure by Fatigue

a(a.)

r 8 (t)s Pfa(t~n)p s(a.o) da O/P8 (t

Fullp W 2~'(.Cpf)9((OF,~,Opc~) Ld3

OCoast. li*RB:n)P f 2(iIpfH(i, fpn 09t~de

KCoast. Jz(n, o r 2~ (A net)(mL , n 0 4t 9 not) I(amjdiU

m. and NrK1'+OR(un'n' Lptf
Coast,

Table 5.11. Suary of expressioun.$or the risk of static

fracture# r (t).

Rumcor

A 4 FM

I.1

Figure 5. 19. Hierarchy o f function sub-programs used to

evaluate r Mt.

.39

5.5.4. Probability of Detection P

The integral expression for the probability of detection

is used only when P S(t) is computed by integrating r(t) with

resect to time. This condition corresponds to the switches

RISK and FULSV having the values 'false' and 'false$ rel ctively.

Pdet(t) is given by equation (3.82),

a(2)

Pdet (t) i Pdet(t'%)P (&O)dao (5. 69)
aCdT)

together with equations (3.94), (3.117), (3.136) and (3.160) for

the various classes of mdel. Neglecting, for the moment,

the terms in (3.94) and (3.136) for uncracked structures, these

equations (which are summarised in Table 5.12), can be replaced

by the set,

FDETO(ao) 0 Pdet(t,no) Pa(& 0)
oo

[P(aO JF~ q ff(R;min)d (5.170)

~ C~Sf FO() d-4 (5.171)J oeC(no,

Fi CP" IIn .6 - 512
a"d the logic described by Figure 5.20.

400

Pzobability of Detection

a(n.)

Olasw .Pdot"OO)

Full f n~o td(@K~L sip) t)&do

p~)5 Lp(A.R(0.4,zI 0 t) &e4$

(t ti)F1 ~ L) z { xp-r (i) P'w.dL

cos It dt pO(p)I(5ioaquost)df

A.and 91 R(110 t* 0 , 0 9 tt) dU~
Conut. dO4tt

Table 3.12. Summary of expressions for P .I:__ ____

401

IIF

CA a

0) %5t 1

A PI
ta

Ftire 5,20, Logic associated with the evaluation of Pdst(t).

The function hierarchy is shown in Figure 5.21.

The functionSFf(p) and F; Y) differ only in the upper

limit of the a integration. The function FBET detects that

the probability of detection is being evaluated and sets the upper

limit according to the value of PLD(Rp). If PLD=0, the function

FC(S) is evaluated, whereas if PLD> 0, the function F (p) is

evaluated. Thus when the second integral in (5. 170) is evaluated,

C PLD is set temporarily to zero and restored to its proper value

after the integration has been completed. Note that in the case

of a non-preof load inspection, PLD will be zero anyway: only

one of the terms in (5. 170) should be evaluated. The code ensures

that this is the case (for simplicity, this logic is not shown

in Figure 5.20)).

For models in which aL is allowed variation, a term for

uncracked structures must be evaluated and has the form,

TV(t,n o) z [P (i Fo()do . (5.174)

This extra term is included only at he first inspection.

The logic abov, the FDCTO control point in Figure

5.20 is controlled by the fuactieq FPtST.

,, il

F P -

eut e APd t. k i

~I

[

1l;"J.&' 5.21. V~e.rwcz~hy of function .ub-pro4Wma usd to

.1 valuate Pd.t(t).

I~

5...Virgin Risk and Adjiustment of Pt

(U) Risk calculation

The virgin risk is computed only when n0=0 and tj*)O.

These conditions can be established during data initialisation

and the requirement for the calculation of r vCt) indicated

by setting the switch VIRGIN 'true'. It in possible

* to over-ride these conditions and set VIRGIN equal

to 'false' as part of the input data and thereby

neglect the risk of failure of uncracked structures.

The virgin risk is given by equation (3.95), it,

Deiigthe followin (un.tion)

31=(L do- (5.176),

the virgin risk can be evaluated using the logic sholwn in

Fig. 522 with RISK a 'true'.* The nex Mona for r v(t).evaluated 1
by this logic are summarined in Table 5.1T3.

Note that the Integrand function? (U) can be written

7gI

d~eso rvM a)

I.~r

Figur* 5.22. Loj;.c associated with the evaluation of r (t).a V

Vrgin Risk

Model (OR&) Pt 7 (t)

s Co st. r___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

I RO
d (O' t

I as,
an

F.L(O() Z r I(i.)(4OO"t) (3.178)

so that provided the lose factor function, GVAL,

returns the term rl(') for the case no=O, and fzO,

the function FALP can be used for both r (t) and rv(t).

(ii) Correction of p(t)

The factor P in (5.116), which involves a single

level of integration, is fixed for a given value of

time. Since this factor also appears in the terms

in P(t) repreent=ig uncracked structures it is computationally

efficient te acesuat for these terms whe this factor

is available, rather than evaluate it again when evaluating

PS(t). The correction of P 8 (t) is therefore made

by the function FRVO. Ikamining equation (3.93) and

denoting the uncorrected probability of survival by

PS(t), the correct function is given by, (for the full model),

PA -P;(t)

*_2(OtEzax)

(5.179)

Denoting the correction term by Tv(t) say,

T,(t)LP - ~ IFai 2,F.() d . (-V (5.1180)

where

(A. -~& Jas Po 1 R(LP01t] 31

The correction tez can be evaluated using

the 1oXLc in Figure 5.-2.owith RISK equal to 'false'.

The . Cunction hierarchy for the evaluation of r V(t)

and the survivorship correction term is shown in F:Lgre .23.

I?

il

P S rr
F/JV*

II

Figure 5.23. Hierarchy of function sub-programs used for

the evaluation of rv(t).

I

'1s-

rTT'rTTT I0! ALP (A~r)

Finc tion

FALP evaluates the term,

T (o - a))r2(.cy(A))Lf(.e, ,n0,r0) (5.182)

where p.,(4,) is the density function for < , r 2 (,<(A)) is the

risk rate for cracked structures and Lf(-., n0 ,t) is a loss

factor term, the orecise form of which depends on the

reliability function currently being, evaluated.

The term evaluated by FALP is the innermost intenrand of the

exoressions for P (t), Pdet(t) and rs(t).

Parameter List

A' G: The value of - for which the term is to be evaluated.

Overation

The exoression evaluated devends on the states of the

logical switches, RIS, FITTSV POPLOS and ALPCOMT accordinR to

the following scheme.

If ALPCOM is true, then variations in W are ignored by the

model and o, (a() is replaced by 1. Otherwise, v.,(*() is

evaluated usinc the function PALP8.

If RISY is true, then the risk term r 2 'fwet(4)) is included.

The current value of R is evaluated, stored in COMITON and used

as the argument of function RLOAf to evaluate the risk term.

If RI1"' is false, this risk term is not included.

If POPLOS is false, then the loss factor term is neqlectel

from the calculation. Otherwise it is evaluated and takes the

following forms.

" ! !I

I

'I

(i) If RISK is false and rTTLSV is true then the current

calculation can only be for Pr(t) and the loss factor

term is given by

Lf((.',not) - . -

S1 - EX?1(-RNV*GVAL(ALDV,;WTV)1

.. (5.183)
where the required variables are assumed to he set by

code external to FALP.

If the argument of EX'I is small (<1 0- 4) the loss

factor term is anproximated by using the series

expansion for the exponential function so that,

Lf(otl,n 0 ,t) - RMSV*GVAL(ALPV,BETV). (5.184)

(ii) If RISK is true or FULSV is true then either Pdt (t) or

r (t) is being evaluated and the loss factor term is,5

LI,,,0t - ' ((,,,t)

- X?1(-RNSV*(VAL(ALPV,1ETV)) (5.185)

(iii) If A-0, then FALP is required to return the correct

integral term for uncracked structures. It is assumed

that CVAL and PSI will return r 1 (O and I resoectively

for this case.

Cranhics Onerations

If FALP is beino called by the intcrand ccntourinj code,

PLTPNT is called to construct a representation of the current

i evaluation noint in (W,8) soace.

If integrand functions are bein, plotted and the -

integration is the outermost integration, PLTSTR is called to

store the evaluation for later nlotting as an outer integration

plot.

'"A

|I

CO"!"O"', Variables Accesse.

PSIVAL: Current value of Y(,).

BETV: Current value of/3-

ALPCO0T: Constant o(switch.

RISK: Risk function switch.

POPLOS: Include povulation losses switch.

PLTI11T: Plot integrands switch.

CONTON: Contour man switch.

nnYT1T: Outermost integration level indicator.

CO-mO3T Variables Changed

ALPV: Current value of o(.

RVAL: Current value of R.

Ii

;I

U

FUNCTION FBET(ARG,ERRORI)

Function

FBET evaluates the term,

where, numerically, F.('-) FALP(ALPHA). This term appeara in

the expressions for PE(t), Pdet(t), rv(t) and rs(t). FBET accesses

various control switches to determine the appropriate expressions

to evaluate.

Parameter List

ARG: Value of for which the term is to evaluated.

ERRORI: Error estimate associated with the evaluation of the

term (returned to the calling code). This estimate

is produced by the adaptive algorithms used by FBET.

Operation

The sequence of operations follows the flow chart shown in

Figure 5.24. and consists of two major phases, the evaluation of

P (0) followed by the evaluation of the integral term in the

square brackets in equation (5.186).

(i) Evaluation of P

The value of f determined by ARG is trasferred to common

storage as BETV for use by other functions and is then

tested to ensure that it is within the interval ti, tf.

FBET returns the value 0 if is outside this interval.

The value of T() is also calculated and transferred to

-' I PSIVAL in common. If Pj-. 0, an error message is created

and no further processing is done.t. |

d/4TV~

U' f e

V(01- NVA

16

Pt Figure 5.2L4.Seqe I' sd~~~

of~ ~ BET=tirl exctdO LT

__ _ _ _ __ _ _ V

i

If BETCON is false, the term p,(#) is evaluated using

the function PBETA. If the density function is zero, no

fur.ther processing is done and a zero value is returned

for FBET. For a model which ignores variations in fatigue

life, BETCON is true and pO() is omitted ,from the term

returned by FBET.

(ii) Evaluation of Integrations over a.

If variations in *. are ignored, ALPOON will be true

and a point evaluation of the integrand is made. For at'

it(.) - FALP(ALPHA), otherwise a zero is returned.

IF ALPCON is false, the integrations in (5. 186) must be

evaluated. The limits ey' A"2 and 43 are evaluated according
2 3

to the requirements of the function being evaluated by the

external code. For all functions,

0Z 1 't(nox) (5.187)

as defined by equations (3.52), (3.53) and (3.128). For

PF(t) and rs(t),

2 ' 2(0 'Rax) (5.188)

as defined by equation (3.56), while for PWt(t)

"2 9C 2(',R) (5.189)

or . if R is zero (see Section 5.5.4).max p

The second term exists only when P (t) is being evaluated;
for this function,

ad 3 O min'(5.190)

If the reliability model includes a virgin risk term, it
is possible that the lose factor term, which is included in
the integrand term evaluated by FALP, is discontinuous
across the line R w, The hadling of this'3 discontinuity is discussed in Section 5.4.4 in

NW . - - , -

16/

onnection *,it'h t-,a evaluation of the loss as-tor. The

essential reniirerient 'i far as '7r is co-cerne' if,

t 1 tt the - inte~ration. of must ')a -ale over t'io

su"-intervals rd' 9 ,c a I(" ,a')I. c all t o

'lV).Tq7 before an-A qfter the inte-,ratio", Ovar tie '-eco-v

interval ,oiiies t he intero tat ion a1e

aronriatelv.

-lie cole in ~rT ,narforriq the necissar-i inte-r.qtions

a-I accwoulates the error estinates fro-i el C 1

iitelration ii n i straiahtor,.-ar- an - o'ious -ianner

us in,! the alarti-ve al~oritl-s iesecril~el in Izection

4.1.

r s oh ics ro e rations

Tf thie inteqration ovpr 0iq the oiiternost itte,!r.ltion of

the fiinction ein I eva Iu at e A ani in t'r n n i lottin- i s

r e mu ir e (as c o nt r o11ei by vTLT'V!- PLT qT" is% ca 11e4 t o 3t or e

each evaltiation for later ilotttne .

77rror *'ess-v~es

(i ' %- "T P'1, Tq :o'vo FO- -'~A = **." has ',eqi

called uith 400 eftual to a valun of 0for *'hicvi ' p is

-term - "o further orocessinj is "'alp aol rn returns

ths value ~

roo'-imn "ariihles Accessei

"": ,irrnnt vpalue o0!

~""T: '"'trrent value of

'(1): Itirrent -valueq of n11

r():'ir rent vA tiii o F

0721: frurrent value of 11

/ +1

7",n: Current value of no .

1T": 1 tme of last insection.

'kNTIV: Current value of ti.e.

ALP'I' T mAmin

AL1"Clmt Constant 4 stitch.

V-TCOV!: Constant 0 svitch.

I S'TS: Inspection sviitch.

P"O TLO9: Include Dolmulation losses sittch.

VTRGr'V: Vir-,in risk s;itch.

I ES I'IT: Convergence criterion for adaptive inteiration.

NOUT: Outermost inteqration level indicator.

CMOI Variables Chan.ei

I 3ITV: Current value of

"SIVAL: Current value of P().

I

I

I

FUCTION FV'O(ARG,ZR 1)

Function

FDO evaluates the function, PdottAO) used In the evaluation

of the probability of detection. ais term ha& the form, for the

most pneral model,

I l(AO t d

(t,... (.)111,)4P ())

Parsmeter List

m: Vlu;'of a. for which the evaluation of Pet(ta I (so))L7L(%

Is required.]

XMORI: Zrror estimate, returned by aU representing the

accumulated effects of any Integrations used in the

e val uation.

01poration

FMITO is evaluated in two stages. The fl.rst stage follows 1

the locLe between the control points FM*O and 111! in Figure

5.20 and evaluates ?DI'! without any contribution from ucraeed I
structures.

The second stage, which is applicable only at the

first inspection, evaluates the contribution from uncradced

structures which are rejected by a proof load inspection.

~L

The code is a straightforward implementation of the

$ requirements of the various possibilities listed in Table 5. 12.

Note the use of PLD to switch FBET to use alternative 1limits

of integratiqn. The correct value of PLD in stored in PLDSTR

while PLD is temporarily set'to zero. Note that if PLD -O on entry

to FIZTOD only one of the integrations over is made.

IC

I
I

i.
J
J
Ij

evaV u -A ut es t e r o iai t vo F i-t e c to n, (t) at an
ie t

insnection.

flar--eter Tist

'T ":"alue ol: ti-e t .Yhich ()is re-tire 4 .

iflV c~llei onl', *yen th3 or'blt"rf sur-.i;',a is

calculateA. via annro-I1oate itt r-tiio of t"le total ri,.! rato-

a-i -avie th toeToete "~ control. noint in "i",ure

' o'r th'e case of -10'iels 'iithlh vrl'in an, it is a.ssu-w t~lit

t!Ie call to r"17 al'unvs folioys a call to '~'~ for tlp see

v:alue of tirie as sneci4 io h~v "T"q ~', qo t*,ot th,-e 1 1it .,o

e- n. are availn.',le in ,,Tn'T'T in-!';TT"L resnectivelv. ro~-

the case of a model with constant relative fatigue life, ROMIN in

rro~ifie4 to "tell n 1 a 9 se c if iei by; equation (3-14.8), (see table 5.16).

'-e a~ linitq are then e-raltite'. ai.3 tii aia-tive mouttoncJ

AnNOTf use'i to per Corn thie reeouirel in te-ratinn.

rrranliics nnerationsJ

The construction nf an outer intejriri-! nlot is co,itrnle-! b,'7

pcallin, L'01"1 o n entry a-i PLTO'71 on cnnletion of th C.

e-.alwation eoF (t).
-e t

'TT' o-?er n, li-!it for inte- rarion.

FUNCTION FRLTO(ARG)

Function

FRLO evaluates the function aP(o >PF (t,n), (RISKfalse)

or p%(ao F(teno), (RISK *true). The function returned by FRLTO

has the general form,

tf Kin)Pa
FRLTO(a 0) jP a0(aOjl F0(de + pfIf(1t)d

Pi(no) (R min)

... (5.192)

Parameter List

ARC: Value of a0 for which the evaluation is required.

Ooeration•

7?'LTO controls the loiic hetween the control points rRTTn

and F"rT in Figure 5.f1or FO and FAFT in Fiqure 5. A detailed

flow chart for the function is liven in Figure 5.2rwhich also

includes the :ranhics operations executed by FRLTO.

The followin- points are "orthy of notice.

(1) 11 an4 q'_ contain the limits Ai(nn) anI t (0 n

respectively and these are evaluated hv the ,throutine
A ',L'f.

(ii) The inte.rations ' ith resoect to Vise the nodes o:

loss factor interpolation table an a %Asis for

adaptive integration strategy when apnropriate.

Graphics Mperations

-f renuired, PLTST" is called to store the evsltitton for
slihseqient construction of en oter intaeranl nlot.

I

|

Im. ..• .m m m sI mm m m e ml e m l ~ m m n ll

F4~' rf t(A41)

IM

igur . v.25. Squencs9 of oporations in FRXAO

4a3

i

The construction of two-dimensional contour mans (ino ,c<

soace) of the intelrand functions is controlled by FRLTO. The

whole process is controlled by the subroutine INTPLT, as

described in Section 5.1n.2.

Error Mlissactes

(i) "FRLT0 ... B1.GE.B2'; The limits of intetgration

preclude an evaluation of the first term in curly

brackets. The error is non-fatal and FRLTO returns a

zero value for this term.

COMMON Variables Chanced

RN0: Current value of n o .

I
I
I
!
I

'I.>'

FUTNCTInN WRVo(ARC)

Function

vRV0 controls the evaluation of the virqin risk rate, rv(t)

and, if necessary, the adjustement of Ps(t) to account for

failures of uncracked structures.

Parameter List

ARG:- Value of a 0 for which the virgin risk is required. ARC

must be zero otherwise the calculation of virgin risk

is not appropriate for the model.

Operation

FRVO controls the logic above the FALP control point in
Figure 5. The calculation of r (t) is executed first bv

v

evaluating PAC i) , (if BET'ON is false) and then either

integrating FALP over e< or makinz a point evaluation of the

integrand (FALP).

The P 9(t) correction term is evaluatei by repeating the

steps involving FALP, but with Rlqv set to false.

Promot s

(i) "VIRr.IN RISK TERMS'; indicates that subsequent ,romts

issued by the adaptive integration routines are

associated with the calculation of r (t).
V

(ii) 'VIRGIN SURVIVORSIP TERM'; indicates that subsenuent

prompts issued by the adaptive integration routines are

associated with the correction term for P (t).

COM'MO'q Variables Changed]

RLT: Current value of PsCt).

I

5.6. Limits and Their Evaluation

The discussion in Section 5 concentrated on the evaluation

of the integral expressions defining the reliability functions,

in terms of the evaluation of the nested sequence of integrations

and integrand functions. The logic diagrams indicated the

processes involved to ensure that the correct form of the

various functions are evaluated. In these diagrams, the limits

of integration were given with the appropriate adaptive integration

algorithm name: the code associated with the evaluation of the

limits was not described.

The various subroutines, function sub-programs and

code sequences used to evaluate the integration limits are

described in this Section.

The descript1on starts with the process of establishing

the default limits defined by equations (3.43) to (3.49). The

limits for the outermost integration variable, a0 , are then

discussed, followed by the and @4 limits.

!.

5.6.1. Default limits

The process of establishing the default limits starts

with the definition of initial values by the input data. The

various definitions and program variables used to store the

initial values are summarised in Table 5. 14.

The initial values are gadually overwritten as the first'

two phases of operation are executed (Table 5. 1). The default

limits, the program variables containing the final values and

the subroutines in which the values are set are summarised in

Table 5.15.

The following points should be noted.

(i) Primes denote initial values of the variables.

(ii) As already mentioned in Section 3.4.1., initial crack

length, ao, is used as the integration variable for the

outermost integration, whereas initial age, no, is used

to represent that variable within the integrand functions.

There is thus a dual relationship between a0 and no . For

each limit defined for no , there is a corresponding limit

for s

Both sets of limits are not given in the Tables in which

the limits are expressed in terms of nO . For each limit

Symbol Definition of initial value Name of
variable

InItial crack length density RNOMIN
(via RANGE)

n O'maInitial crack. length density RNOMAXno~max(via RANGE)

or, Input value of RNO (CNO)-'

First node of a(-) RNI

t f Last node of a() RNF

d Specified value RND

(CND)
or, last node of Cd(a)

Rin First node of PL(R) R(1)

R I Last node of PL(R) R(M)

aL- Density for relative residual ALPMIN
strength via RANGE.

('Density for relative residual ALPMAX
max strength via RANGE

If strength variation ignored

min" "maxa too

x Density for relative fatigue BIIMln life via Range (in BETCNG)

Density for relative fatigue B2x1,max life via RANGE (in BETCNG)

Table 5. 1l. Definitions of and program variables string

initial values of quantities used to determine

3 the default limits.

Symbol Limiting operation Name of Subroutine
variable where set

n,,,,, max Ujn i RNOt4IN aFnSTA
and SETTAO.

nomax n RNOZAX WIN
and SETTAB

mun ALPMIN FIN

max ZmAx ALPMAX FIN

R ma in k .LMax IR maxI R(M) SETTAB

t Maz[;, Ir(R a/dmi RNI, or SETTAB

i- ini

BETA(1)

f Minttf, f(R i./a) PMF or SETTAB

BZTA(N

s min',q .(R /ocax)j ;;:
1/x1 :minB1CI

1/Xl ;,min X mn (in BETCNG) via BETSET

B2 cFIN

,max (in BETCNG) via BETSET

t/x t/x t ,Iin BETMIN BETCNG

t/xl ,max t/x 100MaE BETMAX BETCNG

#rmin t/X1Imin + n o BZTMIN RNO as required

Smax t/x ,maz + no BETMAXORNO

Table 5.15. Limiting operations invloved in establishing

the default limits. Table includes indications

of the sections of code in which the operations
are performed, -.

thus expressed, the limit for initial crack length

can be obtained via the crack length - age relationship,

a(i).

In the code, two sets of values for the limits are stored.

The variable namas for initial ae values all start with

'R'; those for crack length start with 'C'. For example,

CNO and RNO are the names of the variables containing

the current value of a0 and n o respectively.

(iii) The current version of the code assumes that the

specified maximum for aO is less than ad. The

limit equation (3.49) is not completely executed within

the code. (It was not expected that the analysis of a

population of structures having initial crack lengths

gmater than the inspection threshold would be a real

possibility.)

((iv) The limit equations for x, are also included although

these are not strictly part of the set defined by equations

(3.43) to (3.49)

(v) The default limits for n o are applied in two steps. The

first, in CFIN, uses and tf . The second, in SETTAB,

uses t i and t.f Normalisation of the density function

for initial crack length is done in CFIN; the implication

is that this normalisation is based on the age limits as

specified by a(M).!

30
4.30

5.6.2. Limits for oo

The integration limits for initial crack length, ao, are

determined for the various reliability functions by specified

limiting values for initial age, no., These limiting values

are defined in Section 3.4. 1. For a given model, the limits

for all the reliability functions can be reduced to a set of

7 values; nl, n 2 , ndl, nfl nf 2 , nRland np.. The. equations

defining these values for all the models were presented in Section

3.4 and are summarised in Table 5.16.

The limits for the functions described in Section 5.5

are determined by the three values a 1 , n 2 and ndl , and are

evaluated by code in RSKTOT which controls the a0 integrations

for r s(t) and P (t) and FPDET which controls the n0 integration

for PaleWt. The values nf and af are used for the risk

of fatigue life exhaustion, rf(t) and are evaluated by code in

RSKTOT. The values nR1 and nR2 are *valuated by code in

FLPROB which controls the n0 integrations for the strength

functions.

1'
The equations summarised in Table 5.16, rely on three

functions fn , f (R) and which are handled in the code
no no

as described below.

I

I

1 4 .3/

i

Limit Full model and constant Constant role Constant rele
relative strength fatigue life fatigue life and

strength

n1 nomin a'p,mn nOrmain

U2 m"IdO' max 7 mi n no'maxs min[O,max)

f 1 noQ1 "in max nO tmlV tf- t

nf 2 Min o,maxp 2 f-t
maxifno 0 Io(Rmin)

nd1 nOi, nin max[n1,,d-t d-t

n,. I o,m.a - tu,.-I R" o (RA)-t.

nR 4DiO,axo f n 0(R) n a2 (/0

Table 5.16. Summary of equations for the Integration limits

for initial age, or initial crack length.

I

U

4. 3z

i) -nf

The function f no which is used to determine nfL for

the full model only, is given by,

fno' (Idt - tft:.j)/(ttij), (5193)

(see equation 3.78).

In terms of program variables, (5.193) is equivalent

to,

fns(RND*RNSV - RF*RNIM)/(RNSV - RNIM).

(5.194)

0

The function f (R) is defined by equation (3.72) for

no
the most general model and (3.114) for a model with

constant relative strength. For the latter case, fno(RMZn)

is the same as f

This function is evaluated by the function sub-program

called FNOR described below.

(iii

The function OpR is given by the solution of

the equation,

(5.195)
T4

4.33 ,t

I

GR is returned as one of the arguments of the

subroutine ALPHAP which a1so computes 4pR given by

R = ,r((5. 196)

1' ALPHAP uses the 'function RP'which evaluates

the right hand aide of equation (5.195).

C

I

[I
7

I
!,A

SUIP OUT11TT: -kL*tAP(AT, PP,. gTAP,Ply,19,'12)

Function

*ALPTAP finis the lower limit for cwfor an inteeration alon,

the line R-e(4), subject to restrictions on the oermissible

range of A •

Parameter List

ALPP:o ;o(coordinate of the lower limit of intelration.

AETAP: value correspon4 in% too(.

RV: Value of R for whichmep and/S are required.

i'd: Lower bound for /S

12: "noer bound forp.

Oeration

The values of o(p and returned by ALPRAP depend on the

juxtaposition of the lines 4m-i' 4-j82 , o(<"R/Jt#() and

O<- =/I,(Ai(',n 0)) where the function 41 6,n0) depends on the

class of model. For models accountinj for variations in

fatigue life,

4j(j,n) = n0 + (/- n0)ti /t (5.197)

and for those Ignoring variations in fatique life,

A - t + ti . (5.198)

This function is assumed to be available via function FRP()

which returns,

(- (,). / .(A.(n 0)) (5.199) 1
for qivenA6. I

U

4346

The values of and are determined according to thep I'

following conditions.

(i) If R <R, corresponding to PLT<RV, the lower limit ofp

integration is determined by = and the returned

values are,

O~~p= ~/~"(~i) ,~ =' 1.(5.200)

(ii) If R /(n n))<R/ corresoonding to

-SRP()<R, the lower limit of integration is again

determined by 6s-A and the returned values are the

same as for condition (1).

(iii) If Rp /W (,6 1 (,n6))>2n, (,! 2),R corresponding to

FRP(AR, the lower limit is on the linej-4. In this

case 16 is returned as A 2 but x< is returned as

RI(6i(,d2 ,n0)) which represents the intersection of

O(R /Lf(Aj(16 2 tn 0)) and 6 -1 5 2

(iv) Otherwise, the limit is found by solvinj the equation

R Yn1 ()RpP (/6i(, ,nf)) (5.201)

using FSOLVE and appropriate initial guesses.

* I

II

if
I
! I

FUNCTION FNOR(RV)

Function

FNOR evaluates the function f (R) used to determine the upper

limit for n0 for integral expressions for which the restriction

R = (f) holds.

Parameter list

RV: Value of R for which f no(R) is required,

Operation

The function f (R) is defined by equation (3.72),
fno

) (R) m in toax '~(R/4.), Ct.minttd jyRpr('()R)j

-minlo' axaW(R/Lmin) yr'~1(Rr(t d)/R),1&iz~tijl]

/(t-ti%)

(5.2o2)

where

m sin 1tf ,' '(R/%.~)l (5.203)

or, if L is constant equation (3.114),

f(Ra)- a mn~rC/o,~t : '€)t'j)/(t-ti~l "

.0. (5.204)

If there have been no inspections, or t atij, equations (5.202)

and (5.204) are replacedby,

Ifa (R)- ~ (5.205)
0~

F UNCTInv FRP(A r,)
I

Function

FRP evaluates the function

-) (5.206)

which is used to determine the lower limits of integration

along the line R, A ()

Parameter List

ARC: Value of 4 for which the function is required.

Ooeration

The function 4i(6,n,) denends on the status of the ETCOMT

switch. If 1 ETCOM-.' LS.,

f(,O) - W,6)lA(n n + (-n)ti /t) (5.207)

and if 3ETCON- .TUE.,

f(), ase, t + ti (5208)

If, in the latter case, 1> f + t -I

I

I

5.6.3. Limits for

The limits for are given in the integral expressions

listed in the tables of reliability functions described in this

Chapter (e.g. Table 5.10 for PF(t)). The limits depend on various

functions which were defined in Section 3.3.2, (see Table 3.3).

The methods by which these functions are evaluated are described

below.

C (i) ;*-(R)

The upper limit for an integration over is expressed

in terms of !;(R), where

f(R) min Uif$ d(nO), 0 max' maxR/

... (5.209)

For R %Rmin,

t f(Rmi*n) mn , I-td(aO) I#max ~ (5.210)

The function 0d(nO) is defined by,

Ad(nO) nO +- (td-no)t/tia (5.211)

or • t " ti - t if X is constant. (5.212)
d 3

The limit, ;(Rmi) is returned by the subroutine

.BETALM. t;(R) can then be recovered using,

tf(R)- mintl;(Rm5 n), r'(R / (5.213)
f a

/-'439

The function is given by

I(n O) max t no, hin' fj ' (5.214)

and is returned by the subroutine BETALM.

(ii)A

C The function epR is defined by,

, - ma '(R4. , p R, ,(o .) .(5.215)

Subroutine ALPHAP is used to obtain 01pR and

equation (5.215) in th.n.ap1±ed to yieud'p,RO (see

description of FLDRO),

II

' ,I

440 440l

SUBROUTINE BETALM(B 1 ,B2)

Function

BETALM evaluates the functions t1(no) and i;(Ri n) which are

used to determine the integration limits for S.

Parameter List

BI: Lower limit, e (no0

C
Operation

(i) Models which include variations in fatigue life,

For given initial crack length, aO , or initial age, no t

1(no) is defined by equation 5.214), so that

B z m(5.216)

For a given value of time, BETMIN contains the minimum

value of t/x1 so that Omin is given by,

Ain no (t/xl)min

- RNO 4- BETMIN (5.217)

For positive (t/xl)mLn, Bl is thus given by,

B1 -a maxtRNO4BZTMIN,RNI

AMAXI(R04B o MIN,RNI). (5.218)

The upper limit, Tf(Rin), is given by equation (5.210),

so that, neglecting previous inspections,

B2 AMIN (BETMAX+RNORNF) (5.219)

I

If inspections are included,

where B2 on the RUS has been evaluated using (5.219).

Equation (5.220) leads to,

B2 -AMINI(B2,RNO 4. (RND - RNO) *RNSV/RNIM).

(5.221)

(ii) Models with x 1 constant

If x 1 is constant, there are no integrations over

However, the function tf(R 5) is still used to set

some of thedlimits. BETALM has been written to return

sensible limit values for such models.

BI is set to ti as given by RNI.

Without inspections,

t f(Rmi.) - tf (5.222)

so that B2 is returned with the value, RNF.

If there have been inspections,

mntf t ~tij4t+ (5.223)
so that

B2 AMINI(RNF,RND-RNIM+-RNSV) (5.224)I

.I

5.6.4. Limits for at

The integration limits for *. depend on the functions

• t2 (,R), .(no,p) and a defined in Section 3.3.2 and

listed, for referencq in Table 3.3. Typical code sequences

for their evaluation are described below.

(i) _ _ .

The equation defining . 2 (,R) is,

20Rz in[L~a, R/r(#)1 (5.225)

which leads to

2(,Rmi) - AMINI(ALPMAX,R()/PSI(BETV)) (5.226)

in FBET, or

2 tf(Rmi n) ,Rmi n) - AMIN1 (ALPMAXPR(I)/PSI (MFET))

..... (5.227)
where FEET has been set to tf(Rmin), in FRFO.

In FRVO, a 2 (O,R) is iven by,

,-(o,) A ZNI(ALPMAXR(M)) (M.8)

The equation defining .. (no,,) is

33

.... (5.229)

Remembering that the function FRP(0) returns the

function

FRP(#) N Ry'~/'~n,) p (5.230)
the third term in the curly brackets in (5.229) is gien

by FRP(f)/k(0) and the FORTRAN equivalent of (5.229)

Cis,

((no) =AMkXI(ALPLOW,R(1)/PSIVAL,FRP(BETV)/PSI(BETV))

(5.231)

The lower limit for the virgin risk aL integration is

given by

SV "max in R, (5.232)

which is evaluated by,

AEAX(ALPMIN,R(),PLD).(53)

I

5.7. R:sk of Fatime Life Exhastion

The risk of fatigue life exhaustion is given by

equation (3.85), i.e.,

a(nf 2)

- ft) (Pfflt 0 .Pff 2(tn) 0 (a) 0P~
&(nf 1) (5.234)

topther with equations (3.97), (3120), (3.139) and (3.163).

for pffl(t,nO) and (3.98), (312),(3°140) and (3.164) for
Pff2(t,n0) for the various classes. These equations are

summarised in Tables 5. 17 and 5.18.

The evaluation of the term rf(t).P,(t) follows the

logic shown in Figure 5.26. The operations above the FFO

control point are executed by code in RSKTOT.

Note that integrations overs occur only for the case

of the full model. If one of or 3 are held constant,

rf(t) is reduced to a single integration over a0o If

both w- andf are held constant, rf(t) is given by a point

evaluation of the integrand at a value of a0 which depends

on the constant values of -c and i and the current value of t.

The function hierarchy is shown in figure 5.27.

II

I. [

Risk of FaL±gue Lih Exhaustion

a~f)

fle 1Pf1t)pf2 (0)3a

IIFullic/

SE const. P#(t f)1E(29Itfoet)(tf -O~ J(i)/

T t <

____ and #

Table 5.17. Summary of expressions for pff1 (t,fl0).

Class Pt 1 2(t~n0)

run 6ltlfian)F(f(f5 P.Cd)(stf 9 1109 t) dot

OL (uL0.tf)

at c.Dst. 0

cont.

Table 5.18. Summary of expressions for pff2 (t9U 0).

Co$+

IdIC
z*2

2 119+

- -- - -- -- -- aC

Figure 5.26. Logic associated with the evaluation of r ftM.

RS woi"

'II

AVAfrj

ii;

Figure 5.27. Hierarchy of function sub-progruaz used for the

evaluation of rf(t).

0

Ii

(I

J FU'CT1ON FRF0(ARG,ERRORI)

Function

FPFO evaluates the term

T(a 0) " pa O (a 0)] (Pffl(t n0) + Pff2(t'n0)) (.235)

which is used as the a0 integrand for rf(t).

Parameter List

ARG: Value of a0 for which the function value is required.

'K ERRORI: Error estimate returned by FRFO and representing the

error attributed to any integrations.

Ooeration

oFo controls the logic between the control points FFO and

FRFI or FRF2 in Figure 5.Uand consists of two sections of code.

The first evaluates pffl(t); the second evaluates pff 2 (t n0).

In each section, the form of the integrand depends on the

states of the switches ALPCON and BETCON as outlined below.

(i) First section pr -(t)

Full ?fodel

(The calculation of pff1 (t) for models with
variations in . and X Included involves an integration

overs, which is made in thhe usual way using ADAPT2 and

FREI as an integrand function.

The upper . limit is calculated by direct

application of equation (5.227).

' I

The lower limit, Rmil ,(fp,R min).is calculated by the

subroutine ALPUIAP. Note that the call to ALP T&P

restricts the possible solution for OpRmi n to the

interval (ftf(R min. "

OCConstant. 0 Varying

If sis constant, pff (tjn 0) is qiven by

Pff1 (t'no) - pf(T'f)(Z.f- n0)f(RO9,fnOt)/t (5.236)

and exists only when t(Rmin)_ f.

Provided RVIET>RP4?, the term is given by

Cpff 1 (t~n) - P1T('F*1~-4)RS
*(EXPI(-RNSV*GVAL(ALPV,RNF)). (5.237)

QLVaryinq. $Constant

If f is constant and lies in the interval

pff 1 (t.nn) is the only tern that exists and is liven by,

p, (t,n) - P,.C--H"A-,,nO,t)R"o ; (0 < /Y,<OP

- PALPIR(ALPV)*P.(1)*PSTDEV(BETV)/(PSTARC)

*EXP(-RNSV*GVAL(ALP V, BETV)) (5.238)

L- ALPV - Rminl(0) - R(1)/PST(BETV) (5.239)

and

SETV -n, +- t -RMO + RUSV. (5-240)

@..onstant, r Constant

For a -oiet with both & anA 6 coqtant, the r,,(t'

ter. extiqt only ,hen tf(Rmin)-Tf, (RFBET>RNr) and n o -

t-t, (BtTV-PNF). The tern' is thien given by,u

~t pf t n o H H(R O , f ,t f- t)

whereALPV EXPI(-RNSVOCVAL(ALPV,BETV)) (5.o2Zi)
where ALPV and BETV have been set to the values 0 and f
respectively prior to the evaluation of rf(t).

If the model allows for variatioas in not the

anawer is mult±plied by dao/dno, given by CRKDV(RNO).

(ii) Second Section . (tn.)

Pff 2 (tu 0) exists only when t (Rmin)>sf,
(RFIET>RNF) and consists of an inte-.ration, using

AIAPT2, of rRr2 over 4.

The lower limit, g4(n0 ,Tf) is evaluated using the

definition equation (3.52),

sA (n O -,) max(.mL ,Rmjnlf(C'f),

, AMAX1(ALr11IN,R(1)/PST(RWp),ALP?) (5.242)

where ALPP (#) has already Seen returned a Drevious

call to ALPRAP. The logic in -T.vqA1 ensures that ALPO
will contain the correct value of W hich represents

the intersection between the Rmin boundary and the line

!tf*
Follouin- the integration of F?,7, the factmr

(Tf)(Tf- no)/t is included, if is not constant, to

complete the evaluation.

I
I

!i

-tc t o

7 1I eval'ites tlie intev raii for the fi"rst ro~t) ter-. -'h 1

tate ih t" ic is e*.ra tua te r n1 17' 7h P-. an4.i ars e',o0t .f r ee t r -: arv,

*,tas the !a- (see eiati,) 3(. 7)

t -t n))1460(at '"19t) '()0 (S.Z243)

jhere a c%, ,, - (S-244)

'arameter List

"':Yalue of a(f or ,,htic ! the inte-ran-! t ern i s t o *-e

eval uate 4 .

'lqratioin

The locat varialhle ""r- is useli to store 0* 'hich is

corinutei frn the value of at)asse,1 ini 7*1.1 via % 1 - If

n, . a vjal us of zero is returne4 fo ar tlie inte'mran-1.

ther~yise the tern is evaluatei usinj thne functions P\.LP an-'

P37TA for o, (A.) an'i p+ res~~ectively Yith 1!FAL beii- useli toIeval ua te the loss facto:, F~&, n,nt) if revmutrei, (as

rranh ics tOerations

T'LTST' is callei to store the lnte,,ran. ev.aluation if an

outer inem~and plot is to be constructed.

vv 4-5.3 T453r--7A-.

17un ct ion

7""~? evaluates the inte~rtvi fico fir the eco!r;(t)

t o r". This function T'-As theP '~Or-'

I~~~t 1"g)!d~,;,t) (5.24+5)

~'arameter List

A.'(': I'alue of CC. for for 7ihich thie inte,,raid fwiction is

floerat ton

"ebe code ii F"T evaluates the ter- ii a straiftht-oruiar$

naniner Yith the 1033 factor, "(5,,,~e~~ onitteA4 -Yen

losses fron the jop'ilation are neilecte..

rranhics rierations

TIT,71T is cille-1 to store the evalu-ition !or 8Uhiserm'ent

construction of an outer inte~rail ?lot if re-nire-!.

5.8. Strength .stributions

In Section 5.2o3., the organisation of the code in IMPROB

which controls the evaluation of the strength related functions

was described. These functious are; p.(Rlt), P(RI:t) and Z(Rjt),

the density, distribution and expedted value for the failing load,

and pR(a 1I ft), P 2 R I F -,t) and Z(R i7':t), the density, distribution

and expected value for strength.

The docvmentation for PLPROB presented in that Section

described how, for a given value of time, the density functions

are evaluated for a series of values of R and are then integrated

over R by trapezoidal integration to yield the distributions and

) expected values.

hts Section is concerned with the code which evaluates

the two density functions. Most of this code is located within the

DD LOOP which terminates at statement 100 and sweeps through the

set of R values.

r
LI

A _ _ _ _ _ _ _ _ _ _ _ _ _ _'_

5.8.1. Probability density for strength

The density function for strength is given by equation

(3.87), i.e.,

a(nAR)

pR(R I F) t)- 1 fR(Rtn o)Poo(a 0)dao / PSt) (5.246)

a(nl)

C together with equations (3.99), (3.122), (3.141) and (3.165) which

define fR(R,t,no) for the various classes. These equations are

summarised in Table 5. 19.

The evaluation the term p,(RI F >t).PS(t) follows the

logic shown in Figure 5.2S. The operations above the FLDRO

control point are executed by the code in FLPROB.

The result of this calculation is stored in the local

variable, TERM. It is converted to PR(RI F >t) by dividing byt
P (t), which is stored in RLTD(J), the value of which was

computed during the construction of the time sequence of reliability

functions and was stored by the subroutine ADVNCB.

Note that integrations over occur only in the case-

" of the full model. If either o. or i is constant, then

i fR(R,t,no) becomes a point evaluation for a value of which

is determined by n o andwhiah ever of acor -1 is constant.

I
If..a X1 are held constant, then the only meaningful

ii

Probab-litZ Density for Strenatlh

P2 (njI >t) R ssO a')a/St

CLass aRv~o

Ful hi p(pv(Sc)(A.F ont) de

&const PA.(e)K(diosenot)/LiM) t*n*-

.4. O4 !

aL and X (I010O,t)/[%URly(0)I1
Coast. 1 tt 0 tfF

Table 5.19. Summary of *xprossions for fRRtA)

Ia

AD

*A.

J6-1A t

'KL

I4-e
IA

A AO

Figuare 1408 Ltc asociated with the evaluationl of

calculation is one for which n0 in varying. FLPROB tests for

the possibility that all random variables are held constant

for which case no strength calculations are made. The correct

form of PR(RI F >t) for the case of n o varying and the other

two ranAom variables held constant is,

pR(R I F) t) -- fR(Rttno)p no)/PS(t)

c - fR(Rt,no)pao(a)dao /Ps(t) (5-.247)

The function FLD) multiplies the function given in Table 5. 19

by the factor dao/dn0 to meet 6quation (5.247).

The code in FLPI OB associated with the evaluation of

pR(R I F >t) is combined with code associated with the evaluation

of pE(RIt) since both functions are evaluated concurrently.

Examination of the code, in conjunction with Figure 5.28 should

identify the appropriate sections of code.

The function sub-program hierarchy associated with the

evaluation of the density for strength is shown in Figure .29.

II

FL 7

AIPTI P F-

1% gur. 5. 29. Fu~ction sUb-propram hierarchy for the evaluation

Of PR ! 70).

711* ,!.T,. ."1 < 1 (\'IP)

runc tion

v a evaluates the iqceeran4 o. t ht %.iression for

Ii-a.. a fitnction of the forn

!2ara.eter List

A11: alue of !or which the interand is rejuiree.

Oieration

The evaluation of the in er.ni is straiahtlorvtari an!

requires no con-ment other than the fact that the value of f(f)

is checke4 to ensure that it is not zero.

1 rror 'ess&a-e

(i.) " V" 71 ... I nn l ' : the value of 0 results

in a zero value for .* urther oneration of ' is

.rente4 .

C0"'!O" t ar.ahles Chanea,

I T 7: ,arreant value of

?STIWXL: Currant vatue of

- 11

II
ilA

1

I/6
FU'ITIO YLTRO (AGo . O 1)

?unction

FL)RO evaluates the term, fi(htsnO)[pa 0(%o) used to

evaluate p (Rlr>t).

Parameter List

ARC: Value of initial crack length, a,, for which the value
of the function is required.

SEIRO'l Error estimate returned to the calling cote and

representing the effects of any integrations used in

the evaluation of the function.

Operation

The code in FLI')O controls the logic between the control

points T')RO and FDSql in igure..28 and is divided into two

sections. The first section evaluates the contribution fron

cracked structures. The second section accounts for uncracked

structures when appropriate.

(i) Cracked Structures

Pull Model

For the full model which accounts for variations in st

and X1, the contribution from cracked structures

consists of an integral tern which is evaluated usinS

AnAPT2 to interate FDqRI over .tn the usual tray.

The upper limit of intenration is give by

52- tI)

- 'PlW1(1*~tf~It),(5-24g9)

'Yliere r? has een ore-iously evalunte4 by V.T L'! (which

returns a2--(l) A " q has been e'ialuste 4 t v .

the callin, coie and contains the value of fr (9'~.a'

Constant aL , Varyingf

If @L is constant he tern for uncrackei structures

involves no Integrations-. Civen W, p is effectively

determiined as Y(DIRA0), Tkr NoIs stored In. ALPV. ft.

required expression contains the factor

1(p) M -f-()- (5.230) I
which can be evaluate4 by the code calling rL .f and

stored in COITI. To conplete the evaluation, VL"RO

needs only to include the loss factor if required so

that the contribution from cracked structures can be

written ,,

rL?)0()- CO. Tl*,XI (-qNSV*CVAL(ALPV,B7TV))]

(5.251)

,ConstantO . Varyingo.

If X I is constant, # is fixed (for given n0 and t) at

n + t. iff <i, then FLnRO consists of a contribution -J
from uncrackei structures only. This 'virgin' ter" is

evaluated for this class of nodel by the first section

of code in FL"10 and is given by

ft(Rt,no) -

- AL?1A(A)a9T'l(-1k'R9V RLOAT)V) (3.252)

where RLfAnV has been evaluated by the calling code.

If :jXfthe only contribution to FL1)AO Is from]

cracked structures end

f2(3,t,n0) - pC(.)(K,n +t,n,t)fr(no+t)

II

1

- P&LPHA(ALPV)/PSIVAL

A EXP I (-RNS V*GVAL (ALPV, BETV))

... (5.253)
where A- ALPV = R/f(e) - RVAL /PSIVAL

Constant .4 and

An evaluation for i model with x.. and /3 constant

occurs only when P-t+n - F (R/f 0). Ifp{ <ZL'

For f,_~f

II~~~~~~ R (R,t,n 0) =(o~u 2)(~&)d 0 dx

a I/ALP V/PSZDEV(BETV) *CRKDEV(RNO)

* EXPI(-RNSV. .GVAL(ALPV,BETV))

1 •..• (5.-54)

I(jj) 'Tncracked Structures

The secon section of FL!?"A is executed for nodels

which do not have 11 constant. Each time RNSV chantes,

f P (i) is evaluated using ADAPT2 to inteerate PSITk

over . ror a model with o- constant, the tern is

completed by evaluatin-, the loss factor, R(R,f,no,t).

Tor models with .varyin, the density function p&(R) is

also included.

.I
I
I

AIL

5.8.2. Failure density for strength

The failure density for strength is given by equation

(3.88), i.e.,

Ja(n..)
Sa, IfT) R (R(,.n 0 + fRz /(tto)

.. .. (5.255).

The only new function in (2.55) is fR,f2 (R,t,n O) which is defined

by equations (3.100), (3.123), (3.143) and (3.166). These

equations, which are zero for the models in whicheLis

constant are summarised in Table 5.20.

The losCc associated with the evaluation of f ,f 2 (Rt,nO)

is shown in Figure 5.30. The function sub-program hierarchy is

S.ven in Figure 3.31.

The term pffl(t,no) can be handled separately by taking

it out of equation (5.255) thus,
a(nZ)

i

Tf3.~an~)Pff1 (t'nQ) PaO(a 0)daO/PS(t)r(t), (5.256)
a(nRI)

which is to be evaluated for R u Rmin, The term, Tf.(PA(t)r(t)) II
can be evaluated using the code used to evaluate rf(t).P (t),

provided the contribution made by p ffjt,n o) is omitted from

the calculation.

Failure Density for Strength

a(n,)

PRRtzfR(R9 tpno)ra(R) + V(RRfpfltn)-

Ia(UR1)

Clas f R f?-(R, tno)

t tf

*U-ontt 0

ITable 5.20 Summary of expressions for f R,f2(R~t,no).

I ~ Fi

GIA +

Figuzre 5.30. Logic associated with the evaluation of the

fRr(R,t,no) contribution to p ,(RIt). 1
/ _________________

4-,7

L. ,o 6
C

I '

II
-Figure 5.31. Function sub-progra hierarchy associated

with the evluation of the flt RfP("1tn)

cotiuint!l(i)

The vzriable NTERM provides the facility of $turning off'

the Pff 2 (tn O) contribution in FRFO. If NTER is set to 1, the

Pff2(t,no) logic in Figure 5.26 is bypassed.

For the case R zRmin, the evaluation of the term

Tf.PS(t)r(t) replaces the term . r6sulting from fRn(Rotono).

The result of either calculation is stored in the variable

TRMRF.

C
At the completion of a single pass through the DO LOOP

that sweeps through the R values (in FLPROB) the variables

TERM and TMRF have the following values;

a(nR?)

TERMK fR (R t nO)P%(ao)dao (5.257)

a(nRl)

a(n Rd

TRW= fRff (Rt~no)P(ao) o (5.258)

or if R zRmln, 1
a(nR?)

so th EMRIIa Pffl(t~nO)pa,(aO)daO (5.259) ~

so that pR(RIt) is given by -I

OWl
'I

Ai

4*67

Pjj(RJt) -- (TPM-ra(R)+TDMF)/(PS(t~r(t) }

= (TRMERLOAD(R) .'.TRRF)/RSLTDS(J) (5o260)

where RSLTDB(J) contains the value of PS(t)r(t) which was

computed during the construction of the time sequence of reliability

functions.

I

3

All Al4', 6H NFRr A COiPUTER PROGRAM FOR I)I NUMERICAL IVALUAII)N (a /7
(IF RELIABILITY FUN..101 AERONAUTICAL RESEARCH LABS
M[IROURNF (AUSIRALIAI G O MALI INSON [T AL. SIP Al

Al ' I I II ARI /SIRUC 397 1 /(412 ?41

III/hI II/1/
mhnNhhhl Im* muluull *IIIEIEIEII

ME

~21~WIN:I

1 *2 1-

m2'T V". e v a l u a t e s t~h C -Wu n l~tt f lo 9 ,, (a = " 2- , n ,h i C h i s

use4 to conpute tl"2 contri',utiort to n,'lt) -nale 'iv r,(t) ty'l

f itlures.

Para-eter List

A al: "-!ue of intial carck len4th a, !or 'Yich the

evaluation is requirel.

neration

?Ln' is used for out? tvo c.lasses of nolet. In eac' Case

the function contains the factor p~~/(f)!hics is evaluatei

by the callin% code and atored in in .

Prior to the evaluation of the !unction, (I) is evaluatei

and if tess than T, the FLD O is retirned ,i th a :ero value.

Otherwise either

- (5.261)I if f is constant, or
la, fa ...

... (.6)

if 0 is not contalt.

C ' "Taria',les Tianvjed1*

1 1.: Current value of n,.

IL

u-l
| | --

.I

I 5.9. Ba Ic Communications. Input-Output Procedures and

Mlathematical Functions
I

The computer code described to this stage has been

conderned primarily with the evaluation of the reliability

functions or the operation of the various numerical algorithms.

There are several subroutines and function sub-programs that

provide basic communications facilities and other essential

requirements for the program's operation. Those subroutines

are described in this Section.

5.9. 1. Communications

NERF can operate in two modes, 'interactive' or 'batch'.

il In the interactive mode, a dialogue appears on the remote

terminal or visual display unit (VDU). This dialogue contains

prompts, error messages and requests for user responses

Inecessary to select optional facilities an the run proceeds.

In the 'batch' mode, these messages are suppressed from transmission

to the VDU but most appear on the secondary output file.

I
All prompts and messages pass through the subroutine PROMPT

which can detect the mode of operation and process the messages

accordingly. Requests for user responses also pass through

" basic communications subroutines (ITEST, INTGIN, RIALIN and

l • TXTIN) which use PROIT to channel the messages as appropriate

an well an providing a standard format for the requests and

< I subsequent resonses.

The greater bulk of the code in MEWF therefore contains

no direct input-output statements (such a RlEAD, WRITE, TYPE

and ACCEPT) and in independent of the comunciations facilities

provided by the computer system on which 1ERF is installed.

Changes to thoe facilities can be accommodated by making a.

changes to the communications routines rather than changing the

whole code.

The faciLites provided by the communications routines

are described below.

(U) Text string output (PROMPT)

A prompt or message consists of a text string containing

a specified number of characters. To transmit a message

to the terminal and secondary output file, a call to

PROMPT is made, e.g.

CALL PROMPT('THIS IS A MESSAGE',17).

(ii) Echo of user response (ECHO)

A response entered on the terminal is read by the

code in the routines REALIN and TXTIN (the only subroutines

in 1ERF that accept user responses) as a text string. 1
ECHO provides a facility for transmitting an echo of

the response to the terminal and to the secondary output

file. .fl

In the current installation on the DEC SYSTEM-10 at

.ARL there is no need to echo the response on the terminal

and the response is transmitted to the secondary file only.

This version of ECHO does, however, interact with PROMPT

by adjusting the first character, which is always a

'control' character, sent by PROMPT so that the effect

J of a linefeed echoed by the system following a user

response is suppressed.

(iii) Text string input (TXTIN)

Subroutine TXTIN is intended to provide the facility

for prompting and accepting a user response consisting

of a string of characters that will be interpreted as text.

The call is of the form,

CALL TXTIN('FILE NAME?',IO,ANS,1)

where the text string containing the prompt and the

(number of characters in that string constitute the

first two parameters in the call. The user's response

will be returned in the variable ANS. The last parameter

indicates the number of words allocated for storage

of the response.

I (iv) Real number input (REALIN)

RELLIN provides a similar facility to that described

i above when the user's response is to be interpreted

as one or more numbers.

474-

All processing of the response to form the numbers

ishandledby REALIN which contains provision for the

construction of lists of numbers. (See documentation below.)

(v) Integer number input (INTGIN)

INTGIN provides a similar facility to that of REALIN

but for integer numbers. IMTGIN# in fact, calls REALIN

so that user responses for &Ul numbers are the same

and are converted, when appropriate, by the code in

INTGIN.

(vi) Logical input (ITST)

Often, the user is asked to select between two alternative

options and is asked to reply 'yea' or 'no' to a suitable

question. IITZST. provides this facility. For exaple

a statement of the form,

IF(INTIST('DO TIS?,tO)) 0 TO 10

will result in the prompt 'DO =IS?' appearing on the

screen. If the user replies "YU0 or I' a Jump to

statement 10 will be oxeauted. Otherwise cntrol will

pass to the next statement.

Further details of the operation of the oosmunications

routines are g.ven below. II

SUBROUTINE ECHO(TXTNCH)

Function

ECHO transmits a text string to the secondary output file

only. It is intended that ECHO is used to transmit keyboard

entries only. However there is no coded test to prevent

alternative use.

Parameter List

TXT: Array containing the text string to be transmitted.

NCR: Number of characters in the text string.

Oeraton

ECHO operates in a similar manner to PROMPT in that the last

word in TXT is modified so that any characters beyond NCR are

replaced by blanks before transmission. The string is preceded

by a "*' to identify a keyboard response on the secondary

output file.

The first character in PCHR (in common block BATCH) is set
"to '+' so that the next string transmitted by PROMPT (see
below) will supress transmission of a new line.

I
, I

4Y 6

LOGICAL FUNCTION INTEST(A,NCH)

Function

INTEST returns a logical value of true or false, depending

on whether the operator has entered 'yes' or 'no' on the

keyboard from which NERF is being operated.

Parameter List

A: Array containing a text string which will invite the

operator to make the required response.

NCR: The number of characters in the string stored in A.

Function

INTEST uses TXTIN to input the opertor's response to the

prompt stored in A. This respose is checked and INTEST set true

if 'YES', 'Y' or 'T' has been entered. INTEST is set false

otherwise. Note the response must be upper case. The response

'T' is permitted to ensure compatibility with previous

versions of NERF which requested a true or false answer

directly.

Prompts

(i) Prompt stored in A.

I

!
ii

f!

411L 7 7

SUBROUTINE INTGIN(TXT,NCH,IVALS,NUM)

Function

INTGIN controls the input ofinteger constants from the

keyboard of the terminal from which NERF is being operated.

Parameter List

TXT: Array containing a text string which will be used to1* prompt the operator to enter data on the keyboard.

NCR: Number of characters in the text string stored in TXT.

IVALS: Integer array into which the constants will be

transferred by INTGIN and returned to the calling code.

NUM: >0; The number of integers to be input. The number is

fixed and not subject to variation by the operator and

all the integers will be entered on the one line.

<0; The number of integers is not fixed and a series of

prompts will instruct the operator accordingly.

-0; Same as above with the maximum number of constants

set by default to 100.

Operation

INTGIN operates by calling REALIN to input a set of real

constants which are then converted to integers. This means

that data entry is free of format restrictions and real numbers

(e.g. 1e4 for 1000) can be entered if convenient.

For further details of the modes of data entry refer to the

description of subroutine REALIN.

I
h, I

SUBROUTINE PROMPT(TXT,NCH)

Function

PROMPT handles the transmission of text strings to the

terminal from which NERF is being operated. The text is also
transmitted to the secondary output file chich contains a

detailed account of the operation of the NERF program and error

messages.

Parameter List

TXT: Array containing the required text string in A5

format.

NCR: >0; The number of characters in the text string.

=0; A blank line is transmitted.

<0; NCH defines the number of characters in the

string which is preceded during transmission by a

blank line.

Operation

This subroutine is very dependent on the computer system on
which NERP is implemented. The current version is compatible

with the DEC-10 computer operating at ARL during 1982.

Transmission to the terminal is controlled by a TYPE
statement; transmission to the secondary output file by a WRITE

to logical unit number 4. The number of characters per word on

the DEC-10 is 5 which is the value assigned in the routine to

NCHWD. However the code does make the assumption in other

sections that each word has 5 characters and implementation on

another machine with different word length would require

careful reconsideration of the code.

Prompt modifies the last word in TXT so that any characters if
beyond NCR are replaced by blanks. This simplifies output to
the terminal, but does overwrite information in TXT.

7'

Transmission to the terminal is preceded by a control

character which may be used to effect line spacing control if

required. This character is stored as the first character in

FCRR in the common block BATCH. Currently this character is

used to supress a new line following entry of data on the

keyboard of the terminal. After such entry, the operating

system sends a new line to the terminal so that transmission of

a normal text string preceded by a 'blank' would result in a

blank line appearing on the terminal between the echo of the

key board entry and the text string. The insertion of a plus

sign in PCRR immediately after a keyboard entry will supresa

this blank line, (See SUBROUTINE ECHO).

If the BATCH switch (in common block BATCH) is on,

transmission to the terminal is supressed and the text string

is transmitted to the secondary output file only.

44o o

SUBROUTINE REALIN(TXTNUMVAR,NVAR)

Function

REALIN controls the input of real constants from the

keyboard of the terminal from which NERF is being operated.

Parameter List

TXT: Array conaining a text string which will be used to

prompt the operator to enter the data on the keyboard.

NUM: The number of characters in the text string stored in

TXT.

VAR: Real array into which the constants will be stored and

transmitted back to the code calling REALIN.

NVAR: >0; The number of constants to be input. The number

is fixed and not subject to variation by the operator

and all the constants will be entered on the one line.

It is envisaged that this mode of operation of REALIN

will be used for short (less that 5 say) lists of

constants.

<0; The number of constants to be input is not set by

the calling code and REALIN will execute a series of

prompts to instruct the operator accordingly. The

maximun number of constants in this case is -NVAR

(usually determined by the space available in VAR).

-0; Same as above with the maximum number of constants

set by default to 100.

Operation

REALIN is a subroutine that is dependent on the

characteristics of the communications and operating system of

the computer on which NERF is installed. The current version

is compatible with the DEC-10 operating at ARL in 1982.

- K1

For example, the format 1OG for data entry allows free

format to be used. On other systems the free format facility

may have to be invoked some other way.

REALIN operates in two modes, depending on the sign of NVAR.

The first mode is appropriate if a fixed list of constants is to

be input. The second is used to input a list of constant, the

number of which is, itself, part of the information requested

by the calling code.

(i) Fixed list mode

The fixed mode is straightforward in operation. The

line of text entered on the keyboard is decoded and the

results transmitted to VAR. Note that no check is made

on the number of constants actually entered on the

keyboard. It is assumed that the prompt is sufficiently

informative and that the list is short enough to fit on

a single line.

(ii) Variable list mode

Realin commences the variable list mode by

transmitting the prompt stored in TXT and then inviting

the operator to 'enter values 5 at a time - terminate

with 0'. If this method is appropriate, the operator

enters the value of the constants, 5 to a line. A zero

value for a constant is interpreted as indicating the

end of the list. NVAR is set to the number of constants

input and the results are returned in VAR.

Note that if the number zer6 j a legitimate value

for one of the constants the operator must enter a small

number (say 1E-30) to represent that value.

Alternatively, the operator may enter a null line

(corresponding to a zero for the first constant. In
responseREALIN requests that the 'limits and number of

intervals' of a sequence of numbers with fixed spacing

be specified.

,-w 3 |

RI

In either method for entering a variable list, the

operator can instruct REALIN to return an empty list by

entering 'none' on the keyboard.

(iii) General features

After each line of keyboard entry, ECHO is called to

record the entry on the secondary output file.

Each line is checked to ensure that the first

character is a legal charcter for a numerical constant.

This traps the likely error that the operator has

entered a text string by mistake. Although not a

conclusive test for data entry errors, this test has

been found to be successful in trapping most keyboard

entry errors to date. If an error is detected, the

operator is invited to 'enter again'.

Prompts

(i) Prompt stored in TXT.

(ii) 'ENTER VALUES 5 AT a TIME - TERMINATE WITH 0'; Initial

prompt for variable list mode.

(i1) '5 VALUES ACCEPTED'; Indication that a line of data has

been accepted from the keyboard and more is expected.

(iv) 'LIST TERMINATED'; In variable list mode, the current

input action has been terminated. Normally this occurs

following the entry of a 'zero' constant on the

keyboard. 1
Error Meseafes

(i) 'ENTER AGAIN'; Th first character entered was not

legal for the representation of numeric data. The

operator must enter the line of data again.

(ii) 'LIMIT EXCEEDED'; In variable list mode, the operator

has entered more constants than the.pace in the calling K
code can store. REALIN terminates the input operation

and returns the data received to the point of overflow to B K'
the calling code.

SUBROUTINE TXTIN(TXT,NUM,VAR,NVAR)

Function

TXTIN controls the input of a text string from the keyboard

from which NERF is being operated.

Parameter List

TXT: Array containing a text string that is to be

transmitted to the terminal to prompt the operator to

enter the required text.

NCR: Number of characters in the string stored in TXT.

VAR: Array into which the text is to be input and then

returned to the calling code.

NVAR: Number of words in VAR available for the storage of the

text.

Operation

TXTIN executes, in a straightforward manner the

transmission of the prompt in TXT to the terminal, the decoding

of the operator's response into VAR and the transmission of the

response to the secondary output file via ECHO.

Prompt

(i) Prompt stored in TXT.

[
mJU

- - -. ...- - m . ,m, m mmImm a n m m

5.9.2. Two-dimensional data array output

There are several requirements in URF for the output

of two-dimensional arrays of numerical data. The subroutines

ARROUT and IRROUT extend the basic communications routines to

provide a suitable facility.

The two-dimensional array and its dimensions are passed

to the appropriate subroutine (ARFOUT for real data and IRROUT

for integer data) which then controls the formatting and

eventual output to the secondary output file.

.,s in the case of the basic communications routines, the

provision of these two subroutines frees the remainder of the

code of the direct output statements required to write a

two-dimensional array to the output files. Moreover, because

the output is controlled by a single section of code, changes

to the format and/or output destinations are easily made.

LII

- tl "

SUAROUTINE IRROUT(X,M,N)

Function

IRROUT controls the printing of the data stored in the two

dimensional integer array X into the secondary output file.

Parameter List

X: Integer array containing the data to be printed.

M: First dimension of X.

N: Second dimension of X.

Operation

The data in X is printed in groups of 10 columns, (a column

corresponding to the first index being constant) . Each row and

column is labelled with the appropriate index.

The secondary output file is assumed to be logical unit

number 4.

I

I

IfI

1 --

SUBROUTINE ARROUT(X,M,N)

Function

ARROUT controls the printing of the data stored in the

two-dimensional real array X into the secondary output file.

Parameter List

X: Real array containing the data to be printed.

M: First dimension of X.

N: Second dimension of X.

Ogeration

The data in X is printed in groups of 10 columns

(corresponding to constant first index). Each column and row

is labelled with the appropriate index.

The secondary output file is assumed to be logical unit

number 4.

- I

ii

Ul

f
4.0-7

1 5.9.3. Function file input

Some of the functions used to generate the reliability

functions are defined by sequences of ordered pairs of argument

and function values. The sequences of ordered pairs are stored

I in disk files called 'function files' and are read by the

subroutine READFN described in this Section.

The output produced by NERF is written as a function

file containing several function4 each defined for the same set

of argument values. These files are compatible with the format used

by READFN and can be read by the subroutine REAEDF used by

NERPLT.

The data preparation program NFWPRZ contains a subroutine

called FCNFIL which enables the user to create function files

interactively from the terminal. The files produced by FCNFIL

are directly compatible with the requirements of READFN.

I
!

U
"V

SUBROUTINE READFN(X,F, NUM,FNAME)

Function

The subroutine READN opens, reads and closes a file

containing a sequence of ordered pairs defining a function. Such

files are referred to in the MER? documentation as 'function

files '.

Parameter List

X: Array into which the sequence of argument values will

be placed and returned to the calling code.

F: Array into which the sequence of function values will

be placed and returned to the calling code.

NUM: Number of ordered pairs defining the function, (returned

to the calling code.)

FNAME: File name - in the form of a 5 character string deterimining '1
the root for the name, of the file containing the sequence

of ordered pairs. All function files have the extension

'.FCN' .

Overation f

The file name is formed from the 5 characters in FNAME

and the standard extension, o3CN. For example, if the name,

I

I 'DATA1' is passed in via FNAME, RZADFN will look for a file

called DATAI1.FCN'.

The file is opened and read according to the format

specification in Table 5.21. The end of the data is defined

by the physical end of the file.

Note that the parameter ICOL, defining the number of

I columns is read from the file. REAWN reads only a single

function. A companion subroutine in NERPLT (called READF)

cam input several functions from the one file. All the functions

are assumed to be defined for the same set of argument values

and are hance stored in 'columns' in the file. READFN is

compatible with &EAEMF in that it reads the first column of

of a multi-function file.

After reading the function, READFN echoes the data on

the primary output file. Note that this is one of the few

subroutines in NERF which writes directly to one of the output

files.

The format specification in Table 5.21 is met by READFN,

REAIW((in XERPLT), the output statements in PROGRAM NERF and

OUTPUT and the subroutine FCHFUL in NERPRE which prepares

function files.

r
i[

- Imm, m mmmm mmm m

Record Format Variable Significance

1 12A5 3 lines of

-2 12A5 TITLE 60 characters

3 12A5 identifying data

4 13 ICOL Number of columns

or functions

5 22(2X,2A5) READ Headings identifying
up to 10 functions

6 11G X(1), 1st argument value

F(1), lot function 1 value
F2(1), lot function2 value
etc. etc.

1G X(2), 2nd argument value

F(2), t 2nd function1 value

F2(2), 2nd function 2 value

etc. etc.

Table 5.21. Format specification for the function files.

The table indicates the format for the sost

general 'multi function' file. RIADFN reads

the first two numbers (XF) in each record.

UK

49/

5.9.4. Ru time monitoring and program termination

The subroutine EXTIMZ provides a run-time monitoring facility

which can be used to limit the 'cost' of a given run by NFF.

Because the integration algorithms are adaptive, the run-time

for a given calculation can not be predicted. In particular,

considering the possibility that the integration algorithms

have a finite (but small) potential for failure which manifests

as a marked increase in -the number of function evaluations to

effect a given integration, some control of the run time is

required.

EXTIME determines the current run time: if this run-time

is greater than a pre-deterlin.d limit the program operation is

terminated by transferring control to the subroutine FINISH.

The estimation of a program's execution or run time is not

standard within the FORTAN language. The implementation for

the EEC SYSTEM-1O is described below - the routine localises

C the calls to the system supplied timing routines for easy

modification should NEfF be installed on another computer.

ElTIME calls CFNEW to ensure that the next run

can start from where the terminated run left off.

[I' Program termination is executed by the subroutine FINISH

3 which computes the total run time before finally terminating the

* run. The main objective in providing this routine was, again, to

3 localise the system dependent timing and job termination code.

a

SUBROUTINE EXTIME

Function

EXTIME determines the current run time of the computer

program and terminates operations if a preset limit is

exceeded.

Operation

The allowable run time, in minutes is stored in RTIME in the

common block RTIME. Access to the clock is installation

dependent. On the DEC-10 at ARL a system subroutine called

TIMES returns the current job time, (not run time), in

milliseconds. Thus when NERF starts, TIMES is called (by the

main program, NERF) to obtain a reference time which is stored

in IT1, again in the common block RTIME. This value is used to

convert the current job time to an elapsed time.

If 'the preset time is exceeded, control is passed initially

to CFNEW to update the data control file and then to FINISH to

terminate the operation of the program.

Prompt

() 'TIME LIMIT EXCEEDED'; This prompt identifies the

reason for the termination of the operation of the

program.
"1

],
I

I

4-93 4-3

SUBROUTINE FINISH

I Function

FINISH terminates the operation of NERF.

Operation

The run execution time is computed, (see EXTIME for details)

and an informative message is transmitted to the terminal and

placed on the relevant output files.

Prompt

(i) 'RUN ***** TERMINATED'; (The run identification is

inserted in the prompt.)

I

III

494

4-4

5.9.5. Mathematical functions

Generally NEF relies on the mathematical functions provided

as part of any FORTRAN operating system. The exceptions are

detailed below.

(i) Exponential function

The function EXP1 provides a replacement for the usual

function installed in the operating system, and traps

large values of the argument - generating an appropriate

warning message when it does.

(l) Logarithm function

The function ALOG1 intercepts a zero value for the

argument and returns a value of -80.0 to the calling

code. This allows the calling code to cope with a

possible error condition.

(iii) Gamma function

The evaluation of the gamma density function (5.53)

uses the function S14AAF provided by the NAG library

of scientific subroutines. This is the only mathematical

function not provided by a standard FORTRAN system.

[1

FUNCTION ALOGI(ARG)

Function

ALOGi is a substitute for the natural logarithmic function

provided by the system software. This replacement returns the

value -80.0 if the argument is zero.

Parameter List

ARG: Argument for the natural logarithm function.

Operation

ALOG1 uses the system function ALOG to evaluate natural

logarithm for values of ARC greater than or equal to 10- 3 0 .

Otherwise the value -80.0 is returned.

I

I

I-

FUNCTION EXPi (ARG)

Function

EXP1 is a replacement for the exponctial function provided

by the system software. The replacement function provides an

error message of the argument exceeds 80.0,

Parameter List

(ARG)- Argument for the exponential function.

Operation

If ARG exceeds 80.0, an error message is transmitted to the

terminal and the secondary output file. No further action is

taken so that EXP1 returns the evaluation made during the

previous call.

If ARG<0, the value 0.0 is returned.

Error Messaxes

(i) 'EXP1 ... AkRG OUT OF BOUNDS'; The argument of EXPI

exceeds 80.0.

'1

II

5.10. Graphics ,Support

As described in Section 5.2.6., the progrm MEF provides

for the construction of three types of graphical representations

of the processes involved in the evaluation of the reliability

functions, viz, outer integrand plots, integrand - function

evaluation maps and loss factor maps. The post processor XERPLT

provides facilities for plotting the functions produced by NEWP.

The documentation in this Section concentrates on the

facilities provided by NEMF itself. However, the program NERPLT

is briefly described in Section 5.10... for completeness.

NEEPLT makes use of several of the subroutines contained

in the NEP progrsm and presented in this document.

The library of graphics subroutines forms a separate

entity within the NERF progrem. Graphics facilities can be

removed by loading a dummy set of subroutines in place of

this library. Because the associated prompts are contained

within the graphics library, the progra will then behave

as if there were no graphics facilities.

i The description of the graphics subroutines follows the

3 top-down sequence of presenting the groups of subroutines

associated with particular representations followed by the

group of subroutines that provide more basic facilities.

[I!

Before embarking on this description, the following -

general comments are in order.

(1) All the graphical output produced by a single run of

the NF program is transmitted to a file called

FNAHE.PLT on logical unit number 5. FNAME is

the 5 character run identification.

(Ii) Graphics operations are controlled by the logical

switch PLTINT. At the commencement of an interactivefa
run the operator is asked if integrand plots are

required. An affirmative reply switches PLTINT on and

the graphical facilities are activated. Otherwise

graphical facilities are not active for the whole run.

(ii) The graphics subroutines rely on the plotting

library installed on the DEC - SYSTE4 10 at ARL. Although

there is a general tendency for those subroutines to

be called more frequently from the more basic graphics

routines, the code has not been structured to the

extent that only the basic routines rely on the

particular plotting subroutines provided by the

computer installation on which NEF is operating. I j

*The option to create plots is offered only if there is

a single evaluation time for the run.

I, :

5.10.1. Outer integrand plots

The construction of an outer integrand plot consists

of two phases. During the first phase, the integrand evaluations

are stored as the integrand is evaluated. The second phase

I commences after the integral has b~en evaluated and contains

those operations necessary to construct the plot.

Three high level subroutines are involved. Subroutine

V t\PLTSET initi'alises the storage areas used to store the integrand

evaluations. PLTSTR stores the pairs of integration variable

and integrand values as the integration proceeds and PLTOUT

plots the stored values as a graph having the general form of

the example gLven in Figure 5.?.

It is up to the calling code to ensure that the

integrand values are stored. This is why the various integrand

functions in MEWF have code which detects whether the particular

(integrand function is the outermost integrand and, If so, calls
PLTSTR to store the evaluaton.

The three subroutines described in this section perform

I the. general operations described above, The details of the actual

plots created are dictated to a large extent by the subroutines

U described in Section 5.10.4.

!
I

• -

SUBROUTINE PLTOUT(TITLE,NCH,LABX,NX,LABY,NY)

Function

Subroutine PLTOUT constructs a two-dimensional plot of data

pairs that have been stored during a series of previous calls

to PLTSTR.

Parameter List

TITLE:-Text string containing a heading for the plot.

NCR: The number of characters in the heading.

LABX: Text string containing a label for the X axis,

(representing the argument).

NX: The number of characters in LABX. (Only the first 5

characters are used.)

LABY: Text string containing a label* for the Y axis,

(representing the function).

NY: The number of characters in LABY. (Only the first 5

characters are considered.)

Operation

PLTOUT uses SETGRF to initialise a suitable plot space and
then sweeps through the data pairs stored in FARG and FVAL,

constucting a user selected symbol to represent each point. To

do this, PLTOUT determines the ranges of the argument and
-I

function values which are then used as a basis for an

interactive dialogue to determine the limits for the graph and

any other information required by SETGRF. Once the plot space

has been initialised each data pair is scaled and vignetted, if

necessary, before the subroutine POINT is called to construct

the symbol.

Je

Error Messages

(i) 'NOTHING TO PLOT': PLTOUT has been called with empty

data arrays. No plot is created.

(ii) 'INSUFFICIENT DATA TO PLOT': PLTOUT has been called

with only one data pair in storage. No plot is created.

Prompts

(i) 'OUTER INTEGRAND PLOT'

'ARGUMENT VALUES ARE BETWEEN **** AND ****

'XMIN, XMAXXSTEP'

Suitable limits for the argument together with an

appropriate interval for the labelling of the X axis are

requested.

(ii) 'INTEGRAND VALUES ARE BETWEEN **** AND ****

"YMIN,YMAX,YSTEP"

The limits for the integrand data to be plotted and a

suitable interval for the labelling of the Y axis are

requested.

(iii) 'POINT CODE': A number identifying the the type of

symbol to be used to represent each data pair is

requested. (For code values refer to Table .SI.)

Storaze Conflict

The arrays FARG and FVAL used to store the data pairs occupy

space in the GEXP array in COMMON block GCOM.

I
(
I

502

POINT CODE SYMBOL

I Triangle

2 X

3 +

4 Square

5 Point

6 Octagon

ASCII String First character

of string.

ii

TABLE 5.22. Values for 'point code' and the resulting symbols.

(Prepared from Dfeystem documentation))

I

__

I

SUBROUTINE PLTSET

Function

PLTSET clears the storage areas used for data pairs that

will be ultimately used for the construction of 'outer

integrand plots'.

Operation

The clearing operation is effected by simply setting IMAX to

zero.

PLTSET also sets the switch PLOTON which flags whether an

outer integrand plot is required or not. The flag remains

operative until the. next call to PLTSET

Prompt

(i) 'OUTER INTEGRAND PLOT?': Prompt requests a response

from the operator to set the switch PLTON. It is

assumed that a prompt indicating the integration

currently being made has been issued.

I
I

SUBROUTINE PLTSTR(ARG,VAL)

Function

Subroutine PLTSTR stores a data pair consisting of an

argument and the value of an associated function for later

plotting as a series of points on a two-dimensional graph.

This construction is used by NERF to construct 'outer integrand

plots'.

Parameter List

ARG: Value of the argument for the data pair.

VAL: Value of the function for the data pair.

Operation

The role of PLTSTR is to store the argument and function

values in the arrays FARG and FVAL respectively. As each data

pair is stored an index, IMAX, is incremented so that it always

indicates the total number of data pairs in storage. -

Note that if the switch PLOTON is false, no action is taken

by PLTSTR.

It

11

5. 10.2. Integrand - function evaluation maps

Contour maps for the functions pfa(tono) and PF(t,no)

are constructed for the fmU model with no constant if the

run is interactive and the operator has responded in the affirmative to the

appropriate prompts. The maps are constructed by the subroutine

INTPLT which is called from the function FRLTO.

FRLTO is used as the integrand function for both P (t)

and rs(t).P (t): the swit.chqRIS, is used to distinguish between

the two functions. This logical variable is used by FRLTO to

select an appropriate heading for the map: functions are

identified here and by the program REQPLT as listed in Table 5.23.

The switch also selects the appropriate terms evaluated by the

integrand function FALP.

For reference, a typical integrand map is shown in Figure 5.32.

The map is constructed by evaluating the integrand at points in

(o,f) space which correspond to the intersections of set of lines

constructed in the same way as the interpolation mesh used for

the loss factor. However in this case a different set of e values

is used. The selection of these values is described below in the

documentation for INTPLT.

Looking at the map, the sequence of operations for its

1 construction are as described below.

(i) The plot space is initialized by the subroutine SZTGRF which

draws the box around the plot area, annotates the axes anc

£06

Heading Symbol Significance

LOAD L Load

BITA Age
ALPHA Virgin strength

AGE Age

LENGTH a Crack length

AO aO Initial crack length

EXEC RATE 1 (R).r r2 (R)

PSI qkp) Median strength decay function

STRENGTH R Strength

ALPHA DIST p.(.) Density for

BETA DIST pp(f) Density for

P(AO) pa(ao) Density for ao

F(aO) Fa (a 0) Outer integrand for a 0 .

F(BETA) F () Outer integrand for

F(ALPHA) Fd.-) Outer integrand forI RISK r(t) Total risk

RISKS rs(t) Risk of static fracture

RISKF rf(t) Risk of fatigue life exhaustion

RISKV r V(t) Virgin risk

MEAN RISK rmean(t) Mean risk

PR. FAIL P (t) Probability of failure

PR. SURVIV Ps(t) Probability of survival

AV. LIFE ErF) Expected time of failure

Pg. REJECT Pdet(t) Probability of detection

RSLT re(t) .PS(t)

PF P (t) Probability of failure

FLD pE(RIt) Density for failing load

FLP PR(Rit) Distribution of failing load

RSD p (RIf;t) Density for strength J
ItI

RSP ea(Reft) Distribution for strength.

Table 5.23. Headings used on plots and their meanings.

UA34 1SLT INTEGRAND

BETA

j Figure 5.32. Example of an integrand plot. Integpand
is Pfs(t, no) for Example A and t a1200 kbza.

writes the title above the plot space.

i
(ii) The (.4) domain is initialised by the subroutine

SETPLT which also draws the domain boundaries.

(iii) The actual map is constructid by the subroutine ARRPLT

which calls a contouring subroutine, CONT. This subroutine

constructs the contour lines with reference to the

indices of the array used to store the values of the

integrand: The mapping between those indices and the

(ol,@) space is controlled by the subroutine P which

eventually plots the points generated by CONT. Subrout.ne

P also labels each contour line by writing an identification

number at the start of each contour line.

(iv) Extra lines indicating inspection boundaries can be drawn

on the map as shown, for example, in Figure 5.9. This

action is controlled by INTPLT.

(v) The subroutine INTPLT writes the contour levels beneath

the map. (This text was removed from the plot used to

produce Figure 5.32 and the contour levels were written

beside the lines by hand.)

The various subroutines are not called in the sequence

indicated above, but instead, form a hierarchy as indicated in

Figure 5.33. Only the subroutine INTPLT is exclusive to the

integrand map construction process and is described in this Section.

fo?

I NT PLT

SEr PLT CONT

0- C'mIf"a.'

maps i.$ sae

'IL K r-rf.o A

5-57,

After the map has been constructed, FRLTO continues

with the evaluation of the double integral expression defining

the function protrayed by the map. During this evaluation

the subroutine PLTPNT is called to plot each point at which

the integrand is evaluated. A typical result of this action

is shown in Figure 5.34.

As described in the documentation for PLTPNT below,

the insertion of the evaluation points on the integrand

map can be restricted to subdivisions above nominated levels

(different levels foro(ande) so that the final plot does not

become too cluttered.I

•Ii

UM319 1RSLT INTEGRAND

1wwe

IIi

mla

Exampl +. "3 t,(,t5Oh.

70.9

Z" v

~BETA

SUBROUTINE INTPLT(TITLE,NCH,B1,B2)

Function

INTPLT controls the contruction of a contour map of the

integrand of a two-dimensional integration over and using

the function FALP. The subroutine also controls the

construction of representations of the various integration

bounds .that are applicable.

Parameter List

TITLE: Text string containing a suitable title for the map.

NCH: Number of characters in the title.

El: Lower limit for the integration.

B2: Upper , limit for the integration.

Operation

The map is constructed over the same region in ot,fspace over
which the loss factor interpolation table is described. The
mesh used to define the point values of the integrand used for

the map resembles that used for the loss factor but has more

values.
•I

The actual number of additional nodes depends on the

available space in the GEXP array, (used to store the point

values), and the value of an integer NTYP which sets the

typical resolution for the 0 direction.

The nodes used to define y() are used as a basis,

additional nodes being inserted to ensure that the maximum

interval is less than (0n-fI)/(NTYPE-1). NTYPE is initially set
to 4L and once the extra nodes have been inserted, the user is

given the opportunity to change NTYPE to either increase or *
decrease the final number of 0 nodes. If during the insertion

process, the available storage is exceeded, the user is advised

and, again, given the opportunity to change NTYPZ.

-C

Once the total number of new nodes has been established and

the nodes transferred to the array BETINT in INTCOM, INTPLT

performs the following tasks.

() ISWT is set to 1 to indicate that the data in INTCOM

defines the relationship between the node indices and

8 . (Rather than the normal data used for the loss

factor table.)

(ii) -The s. limit arrays, ALPIIN and ALP2IN are computed

according to equatios (5.74) and (5.75).

(iii) The integrand values at each mesh point are evaluated.

Note that PLTINT is set to false to prevent any of the

plotting facilities in FALP from being activated.

(iv) After seeking a response from the operator, ARROUT is

called, if required, to print the integrand values.

(v) ARRPLT is called to construct the contour map.

(vi) The F limits defined by BI abd B2 are drawn on the plot

using the subroutine SMOOTH to create broken lines.

(vii) The proof load inspection boundary is included by

calting RLINE with IPM--.

(viii) After seeking responses from the operator, extra R

lines having R- o'f'(() constant are constructed using

RLINE.

Prompts

(i) 'INTEGRAND PLOT?': The operator is requested to select

wether to plot the currnt map or not. It is assumed that

prompts issued prior to calling INTPLT will identify

this prompt.

(ii) 'USING NTYPE *** INTEGRAND MATRIX IS *** BY ***

CHANGE NTYPE?':

The operator is given the oportunity to change NTYP and

hence the resolution in the direction.

-is

(iii) 'NEW VALUE FOR NTYPE': This prompt follows a response of
'YES' to the one above. The operator enters the new

value of NTYPE.

(iv) 'USING NTYPE - *** INTEGRAND PLOT FAILURE AT J -

NEW VALUE FOR NTYPE':

The available storage has been exceeded when trying to
satisfy the resolution specified by NTYPE. The value

of J indicates how far through the sequence of 0 nodes
'that INTPLT had got. The operator must enter a lower

value for NTYPE.

(v) 'PRINT INTEGRAND VALUES': The operator enters 'YES' is

a printout of the integrand values is required.

(vi) 'INCLUDE RLINES': The operator enters 'YES' if

additional R lines are required on the plot.

(vii) 'R VALUES': The operator is asked to specify the R
values for the additional R lines. Responses follow

those specified for REALIN.

(viii) 'DOT CODE': The operator must enter an integer defining
the line coding used for the additional R lines. (See
SMOOTH for details.)

Ii

0'
4]

Slid-

SUBROUTINE PLTPNT

Function

PLTPNT plots the position of the point (ae), (defined by

ALPV and BETV in the COMMON block PARCOM), on a two-dimensional

integrand diagram. The point is assumed to be associated with

a double integration over d and 0: a level of subdivision as

indicated by the numbers J1 and J2 in INFORI and INFOR2

respectively can be associated with the point.

Operation

PLTPNT assumes that the plot space has been initialised by a

prior call to SETPLT. The point is plotted by the subroutine

POINT which is supplied by the DEC SYSTER-10 software.

The first time PLTPNT is called, the operator is asked to

specify the maximum level of subdivision for which the points

will be plotted. The operator is also asked to specify the type

of symbol which will be used to indicate the position of the

point. The code for the symbol is stored in ICODE and is passed

into POINT. The symbols and their associated code numbers are

listed in Table 5.22..

Prompts

(i) 'INDICATE MAX. LEVELS FOR PLOTTING'

'FUNCTION EVALUATION POINTS'

'BETA'

The operator is asked to specify the maximum level of

subdivision in the integration for the display of

evaluation points.

(ii) 'ALPHA': The operator is asked to specify the maximum

level of subdivision for the o.. integration for the

I display of evaluation points.

Note that a value of 0 for both limits results in no

action by PLTPIT. Refer to Section 4.1. for the

5-16 A-(

significance of the levels of subdivision. "

(iii) 'ENTER POINT CODE - 1,2,3,4,5 OR 6: The operator is

asked to specify the code for the selected symbol.

-I

1

II

11

3--
I

5. 10.3. Loss f actor mars

Contour maps of the following functions can be

constructed.

~(1) 0 Integral

The G integral is the function stored in the file

QOOM.DAT and is defined by

2) r2 'y()d A . (5.263)

(i) G Function

The G function is defined by,

I' ti

G(,,sl * (5.265)

I I (III) Loss factor

The loss factor H(.(K,,nOt) In defined by equation (5.60)

and either (5.61) or (5.62) depending on the value of no.

Contour map. of the first two functions are offered by

VK the subroutine SETTAB: The facility to construct these maps

was installed duriag program development and it is not envisaged

-1I4

that it will be used particularly often.

The loss factor has the most obvious physical interpretation

and is constructed by the subroutine RMSTOT. A typical example

is given in Figure 5.35.

The thrqe functions are mapped by establishing a matrix

of values at points corresponding to the intersections of the

lines in the loss factor interpolation mesh. These values

are calculated in the subroutine constructing the map (i.e.

SETTAB or RSKTOT) and ARRPLT is called directly to construct

the map. A simple switch in the subroutine P is used to

distiguish between these maps and the integrand maps which use

j a different mesh.

An optional facility provided during the construction

of the map of the G function is the construction of a representation

of the loss factor interpolation mesh. Subroutine GRID makes

the construction and an example was given in Figure 5.12.

*1

l
ts1

L431 7 LOSS FACTOR

1 2 a

110.3

4 ji-

(-aH

Figpu. 5.35. Exaiuple of a loss factor m ap.

520 5"

SUBROUTINE ARRPLT(TITLE,NCH,ARR,M,N)

Function

ARRPLT controls the construction of a contour map of the

data stored in the array ARR. This-data usually represents the

integrand of a two-dimensional integration over * and 0, but

can represent the loss facto the G function or the G integral

Paramet-er List

TITLE: Text string defining a suitable title for the contour

map.

NCH: Number of characters in TITLE.

ARR: Array of data values of the functlon for which the map

is to be constructed.

M: First dimension of ARR, (corresponding to the

direction.)

N: Second dimension of ARR, (corresponding to the aL.

direction.)

Operation

Much of the work associated with the construction of the map

is preformed by other routines which ARRPLT calls to execute

the sequence of operations listed below.

(i) A prompt identifying the map being created is generated

to relate subsequent prompts correctly.

(ii) The plot space is initialised by calling SETPLT.

(iii) The numerical range of the data in ARRPLT is computed

and used during an interactive dialoque which

establishes the contour levels to be used in the map.

(iv) The contour levels are written beneath the plot space.

11

I

(v) If the operator selects an optional logarithmic

interpolation facility, the logarithms of all the data

in ARR and the contour levels are taken.

(vi) The map is contructed by calling the subroutine CONT.

Prompts

(i) 'FUNCTION LIMITS *

LEVELS':

The user is requested to define the contour levels. The

possible responses are described in the documentation

for REALIN.

(ii) 'USE LOG INTERPOLATION?': The user can select the

optional facility for using logarithmic interpolation

for the construction of the contour map.

I

I
I

I
I
I

SUBROUTINE RLINE(RARG,1PM)

Function

Subroutine RLINE draws the line R-ac#(p) on a plot space that

base been set up for a two-dimensional integrand plot. If IPM

is negative, the line R - a'(n 0 +(0-n 0)t i/t)) is drawn

instead. (The latter line corresponds to a vroof load

inspection boundary.)

Parameter List

RARG: Value of R fo'r which the line is required.

IPM: Control parameter (integer).

>0, Same as for positive values of IDOT in SMOOTH.

<0, The alternative line described above is drawn.

IPM has the same significance as IDOT in SMOOTH.

Operation

RLINE operates by generating a sequence of data pairs of

and which are passed to SMOOTH to construct the line. The

line is vignetted by the limits (6min ando(max) so that the

code generatimng this sequence has three sections. The first

and last sections determine the end points of the line. The

middle section generates the intermediate values of P and the

corresponding values ofeo.

The e points are chosen using the nodes defining y(F) as a

basis and inserting extra nodes to ensure that all the

intervals are less than RINTVL*(4n - Pi) where RINTVL is set

within RLINE. (Currently RINTVL-0.02.)

If IPM is negative, meaning that the proof load inspection

boundary is being drawn, the line is resticted to n o_<F_<n.

:[,

SUBROUTINE GRID

Function

Subroutine GRID draws a representation of the mesh used for

the interpolation of the loss factor on the plot space set up

for the display of integrand functions.

Operation

The -mesh lines correspond to integer arguments for the

subroutine P(X,Y,NPE). The representation is drawn in an

obious way by following lines having one of the arguments of P

held at a constant value for each mesh line.

I

I

I
1 ..&

SUBROUTINE CONT(T,MD,ND,CONLEV,NC)

Function

Subroutine CONT constructs a contour map of the surface

represented by the array of spot heights, T. The map is

constructed relative to the two-dimensional orthogonal mesh

defined by the indices of T and transformed to a real system via

the subroutine P which contains all the plot system dependent

code.

Parameter List

T: Array containing spot heights of the surface to be

contoured.

MD: First dimension of T.

ND: Second dimension of T.

CONLEV: Array containing the contour levels to be used in the

map.

NC: The number of levels stored in CONLEV.

Operation

Subroutine CONT is a large routine which was developed as

part of more general purpose graphics software for which

documentation will be eventually provided. It is beyond the

scope of, nor required, that this documentation describes the

details of the contouring process.

Broadly the array T is searched to find the significant

features of the surface and possible starts and finishes of

contour lines noted. For each contour level, the routine then

traces the contour lines using a systmatic procedure which

ensures that all lines are drawn but no line drawn more than

once.

--

I

Error Messages

(i) 'ERROR (***) IS LARGER THAN IRMX (**)': The

number of the second dimension of T exceeds the space

available in CONT for the storage of information

pertaining to the location of possible starts for

contour lines. The dimension of the array IROW will

have to be increased and CONT re-compiled.

Note, that CONT contains another fixed array, IS, which is

used to store the locations of all possible starting points for

a given contour level. If this storage Ls exceeded, CONT

automatically bands the array an constructs the map in smaller

sections. If this occurs often (meaning that the surface is

always very complex) the size of the array should be increased

as it is slightly more efficient to construct the map for the

whole array at once.

I

!

''I
li'

SUBROUTINE DIAG(T,M,M1,Nl,I,J,C1)

Function

Diag finds the point of intersection of a contour line with

the diagonal of a mesh cell. The routine is called only by

CONT.

Parameter List

T: Array of spot heights.

M: First dimension of T..

MI: Local X directional offset.

Ni: Local Y directional offset.

I: First index for current mesh cell.

J: Second index for the current mesh cell.

CI: Contour level.

Operation

Subroutine DIAG is called by CONT during the process of

tracing a contour lirie. DIAG calculates the point of

intersection of the contour line with the diagonal of the mesh

cell and plots the point by calling subroutine P.

If the logical switch DGS is true, diagonal interpolation is

neglected and DIAG does nothing.

I

SUBROUTINE P(X,Y,NPE)

Function

Subroutine P converts an XY position relative to two array
indices to two real coordinates for plotting.

P is used primarily by the contouring subroutine, CONT but

is also used by the subroutine GRID which constructs a
j representation of the interpolation mesh for the loss factor

table.

Parameter List

X: X coordinate, relative to the first array index of the

point to be plotted.

y: Y coordinate, relative to the second array index of the

point to be plotted.

NPE: Control parameter.

-2, Current point is joined to last point.

I -3, Current point is not joined to last point. The

current contour level is drawn adjacent to the point.

-4, Current point is the last point in a closed curve.

-13, As for 3 but no level is drawn.

Operation

Subroutine P has two main tasks. The first is the

calculation of and from the values of X and Y. The second is
the control of the plot instructions required to comply with

the actions specified by NPE.

P effects the transformation from X,Y to by accessing two

alternative data sources. The first defines the geometrical

arrangement of the loss factor table and is stored in the

3 COMMON blocks PSICOM and ALPCOM. The second set defines the

refined geometry used to define an integrand functions and is

,II

stored in the COMMON block INTCOM. Selection between the two

data sources is made by the integer ISWT in COMMON block ISWT.

If ISWT-O the first source is used. If ISWT-I, the second is

used .

In both cases, the transformation is made via the same

sequence of operations. The interval containing is found so

that fj< fj+l" Then f is given by

fj + (X - - fJ) " (5.266)

The corresponding CL value can then be retieved using ALPTAB

described in Section 5.4.1. Rather than obtain the Cc value

directly, values for RK-Y are found for f and fi+ and linear

interpolation used to calculate w, forp . (If direct evaluation

is used, contour lines can cross the boundaries of the

integration domain by, admittedly, small amounts. The result

using the double evaluation and linear interpolation is

aesthetically more pleasing.)

The remainder of the code perfoms the second task in an

obvious manner.

I

_1

I'

SUBROUTINE SETPLT(TITLE, NCH)

Function

The subroutine SETPLT initialises a two-dimensiond1 plot

representing an integration domain in (0,F) spaca. The plot

space is intended for use either as an integrand - function

evaluation plot or as a loss factor, map.

Parameter List

TITLE: Character string indentifying the plot.

NCH: Number of characters in the string stored in TITLE.

Operation.

The plot space is initialised via the following steps.

(i) A new brigin is established at the bottom left hand

corner of the current plot space and the scale factors

used by the plotting software are restored to 1.

(On an initial call to SITPLT, XVAR(i) and YVAR(1) are

assumed to be set to zero so that this step has no

nett effect.)

(ii) A new plot area is established by calling SETGRF.

Note that SETPLT checks the plot counter (INP) stored

in the common block PLTPMS. If IP has been incremented

since the last call to SETPLT (as would be the case if

PLTOUT had constructed an outer integrand plot), SETGRF

is called with ISET -1 so that the operator is asked

to specify the plot size. On the first call to SETPLT

the operator is advised of the and ranges and asked

3 to specify the plot ranges for these variables and

suitable numbers of interval markers for the plot

space annotation (see SETGRF). The number of intervals

is selected by specifying a suitable 'step size' for

each variable. K

5-33

(iii) Scale factors are computed and the origin reset so

that the bottom left hand corner of the plot space

corresponds to the point defined by the minimum values

ofand F selected by the operator. The scale factor

used by the plotting software is set so that future

plotting can be done directly in terms ofd(and .

The subroutine SCLFCT is called to set scaling parameters

used by SMOOTH.

(iv) A representation of the maxixum possible limits for

the integration domain for cracked structures is constucted

using the lines edjfin CZAmax' FTis fAr " sin

and W-% R=/).

Prompts

(i) 'INITIALISE INTEGRAND PLOTS'
'BETA VALUES BETWEEN ***, AND *o'

'BETAMIN,BETAMAX,BITASTZP': Request for the range of
to be used to set up the plot space and the interval to
be used between 'tic marks' on the a axis.

(ii) 'ALPHA VALUES BETWEEN e*** AND eeee

'ALPMIN,ALPMAX,ALPSTEP': Request for the range of s to be

used to set up the plot space and the interval to be

used between 'tic marks' on the 9L axis.

Common variables chanxed

INP: Graph counter.

XVAR: Array of parameters for horizontal axis.

YVAR: Array of parameters for vertical axis. II

f 5"31 3

5.10.4. Graphics support subroutines

The subroutines described in this Section provide basic

graphics support as described below.

(i) Initialisation of a vlot ar"

Each graphical construction requires a 'plot space'

to be initialied. The subroutine SNTGRF performs this

task and is used by the graphical routines in Nf and

NERPLT. As currently configured, the graphs are drawn

to fit on A4 size 'paps'.

j(ii) Smoothing and line codin

The subroutine SMOOTH allows a certain amount of smoothing

to be applied to a curve defined by a sequence of line

segments. A by-product of this process is the ability to

draw the smoothed line as a broken line with variable

mark-space ratios. This facility is used by NERF to

draw smooth representations of the constant R lines on

the integrand maps and to provide line coding which

is used by NERPLT to distiguish between functions.

Subroutine SMOOTH is supported by the subroutines PLOTD

5 and SCLFCT.

3 (.Ii) Conyersion of numbers to character striums

The annotation of a graph requires the conversion of

nuabers to character strings. This faclity i. provided j

by th. subroutine F5123. 1i

!i

Ii'

Ii'

S33 S-5 3
SUBROUTINE FSIZE(ARG,TXT,LENGTH)

Function

FSIZE converts a number stored in ARG to a text string

suitable for display on a plot. The main task executed by FSIZE

is the selection of an appropriate format for the number.

Operation

ARG: A real number for conversion to a text string.

TXT: Array into which the text string will be returned to

the calling code.

LENGTH: The number of characters returned in TXT.

Operation

The format is selected according to the following rules.

(i) ARG - 0

The format selected is F4.1.

(i1) 10-5< ARG <10 5

Fixed decimal format is used. The format is F(L).(INDD)
where

L - INDF + INDD + 2. (r.iT)
INDF is the number of digits to the left of the decimal

point. INDD is the number of digits to the right. INDD

is chosen such that a maximum of NSIG significant digits

are used to represent the number with all trailing zeros

suppresed. NSIG is set as a parameter in FSIZE.

(Currently NSIG "- 8.)

If ARG is negative the length L is increased by 1 to

include the sign.

I-
II

II

(iii) ARG >10 5 or ARG <10 - 5

Exponential format is used, being Ei1.4 if the number is
negative and E12.4 if the number is positive.

Note that all the formats allow for a single space at the

front of the text string.

SUBROUTINE PLOTD(X,Y,NPE)

Function

The sole function of PLOTD is to provide an interface

between the plotting requirements of subroutine SMOOTH and

the subroutine PLOT provided on the A.R.L. DEC system 10.

Parameter List

I X: X coordinate of the point to be plotted.

Y: Y coordinate of the point to be plotted.

NPE: Pen control parameter.

-3, Point is not joined to last point.

-2, Point is joined to last point.

Operation

IPLOTD changes the pen control parameter from 2 to 4 and

provides the plot logical unit number (5) for transfer to the

subroutine PLOT.

I
I'
'U

I I i mmm

5S36

SUBROUTINE SETGRF(L U, XVAR, YVAR, LX, LY, TITLE NX, NY, NT, ISET)

Function

The subroutine SETGRF sets up a plotting area on

the file associated with the logical unit, LU. The plotting

area is a sub-area of a page. SZTGRF draws an outline of

the plotting area, annotates the axes and exits with the

origin set at the bottom left hand corner of the plotting

area and plotting coordinates scaled so that one unit corresponds

to one inch on the plot.

Parameter List

LU: Logical unit number.

XVAR: Array containing three variables:

XAR(1) Minimu. value for the coordinate represented

by the horizontal axis.
XAR(2) Maximum value for the coordinate represented by

the-vertical axis.

XAR(3) Size of interval between 'tic' marks on
the horizontal axis.

YVAR: Array containing three variables as described above

for XVAR, but pertaining to the vertical axis.

LX: Character string defining a label for the horizontal

axis.]

LY: Character string defLning alabel for the vertical

axis.

TITLE: Character string defining a title for the plot.

NX: Number of characters in the string in LX.

NY: Number of characters in the string in LY.

NT: Number of characters in the string in TITLE.

ISET: If ISET is non zero, SETGRF will ask the operator I
to specify the plot size.

If ISET is zero, the operator will not be asked and

SETGF will use the parameters established during a U

previous call.

f37

Operation

SETGRF establishes a plot area according to the variables

defined in Figures.. The size of the page (XLR x YLR) and

the minimum margins (XMARH,XMARL, YMARH and YMARL) are defined

with7the subroutine and are currently set to correspond to

an A4 page. YC is set to correspond to the outer extremities

of marks that are drawn on the plot to delimit each A4 page:

the size of these marks is set by BIT. The title is positioned

above the plot area by a distance determined by YTITLE.

Other parameters set within SETGRF are: CHRIT, half the size

C of the smallest character drawn by the plotting software supplied

by the system; MAG, the magnification of that character size to

generate the numerical labels for the coordinate axes, and

SMALL, the length of the 'tic marks' placed on each axis.

For reference, a typical plot initialised by SETGRF

is shown in Figure C'37.

The initialisation process follows the following sequence.

(i) If ISET is non-zero, the operator is asked to specify

the size of the plot in inches. This action specifies

values for XL and YL. From these values the variables

(XD and YD are calculated so that the plot space is positioned

centrally in the vertical direction and right justified

against the margin in the horizontal direction.

(ii) On entry, the plotter pen is moved to the midpoint of

the left hand edge of the page. The A separating

marks are then drawn.

(iii) The outline of the plot space is constructed and the

origin shifted to the bottom left hand corner.

(iv) The title is placed centrally above the plot space.

(v) The limits of the horizontal axis are annotated with
representations of the values specified by XVAR.

5S-3

CMA&LYMA K(

L~F YIA& A I t

______________flat~tf Cb

Y~a#a

YMARI. err

Mark.

Figure 5.36. Program variable names and their associated

measurements as used by SETGRF to set up -

a plot space.

I-

5-39

LN324 RSLT TER

- . * .3 i E -

0.0 99.

I. BETA

Figure 5.37. Example of a plot initialined by SETGRF.

(Outer integrand plot for r,(t) for

I example A, ts 1200.)

'

(vi) Vertical 'tic marks' are inserted along the horizontal

axis. The number of marks is not by the size of the

interval specified by XVAR(3). If XVAR(3)-.O, 10 intervals

are used by default. The number of intervals is limited

to 20.

(vii) The label for the horizontal axis is placed, centrally

below the plot space.

(viii) Operations (v) to (vii) are repeated for the vertical

axis. This tim% each 'tic mark' is annotated with a

representation of the numerical value of the coordinate

at that location on the vertical axis.

Net. that the character strings representing values on the

coordinate axes are produced by the subroutine FSIZE.

The example given in Figure $Slwas produced by a call of the

form,

CALL SETRF(3,XVAR,YVAR,'BETA','F(BETA)','UM324 RSLT TERM',4,7,15,1) i

with XVAR(1) O, XVAR(2) =5000, XVAR(3)-I00QYVA(1)= 0, YVAR() 5e-8

and YVAR(3):lt-# The operator chose, XL- 4, YL -3.5.-

Prompts

(i) 'LENGTH OF X AXIS (INCHES)': Request for XL.

(ii) 'LENGTH OF Y AXIS (INCHES)': Request for YL.

Common Variables Changed

XO: Minimum value for x for coordinate system for plot space

(nt to 0). "

XL: Maximum value for x for plot space coordinates.

YO: As for XO, but for y.

YL: As for XL, but for y.

SUBROUTINE SCLFCT(LU,SX,SY)

Function

The subroutine SMOOTH requires the current scale factors

that are in use by the plotting system to be stored in the

COMMON block SMTRSC. Subroutine SCLFCT estimates those scale

factors and transfers them to the COMMON block. The scale

factors are also returned to the calling code via the parameter

list.

Parameter List

LU: Logi'cal unit number for the plot file.

SI: Scale factor for X as transferred to COMMON.

SY: Scale factor for Y as transferred to COMMON.

Op~eration

The scale factors are estimated by moving the plotter a

fixed distance and accessing the plot software to find the realIi coordinates of the end points of movement. On the DEC system

10, the real coordinates are returned by the subroutine WHERE

and the movement is effected by calling PLOT with integer

arguments of 100 for X and Y. This results in a pen movement of

1 inch in each direction. A call with X and Y equal to -100

restores the plotter to the position prior to the call to

SMOOTH.

SUBROUTINE SMOOTH(XP,YP,NPE,IDOT)

Function

Subroutine SMOOTH provides a curve smoothing facility for a

line defined by a sequence of data pairs (XP,YP) to which

SMOOTH has access only at the time of call.

A secondary function (but the primary use made by WERF) is

to provide line coding facilities by inserting breaks in the

line according to the code in IDOT.

Parameter List

XP: X coordinate of the point on the line.

YP: Y coordinate of the point on the line.

NPE: PLot control parameter.

-2, Point is joined to the last point received by

SMOOTH.

-3, Point is not joined to the last point received by

SMOOTH. (i.e. point is the first point of a new line.)

-4, Point is the last point of closed curve.

-5, Current line is complete; XP and YP do not define a

new point.

-6, Smooth asks the operator to specify a new smoothing

(or line break) interval.

IDOT: Line coding control parameter.

-0, Line is solid. No breaks are inserted.

>0, Line is broken. Breaks equal to the current

smoothing interval are inserted between solid sections

that are IDOT*(the smoothing interval) long.

I

.1

<0, As above but each second solid section is only one

smoothing interval long. (i.e. dash-dot lines are

drawn.

1<-1 9, No smoothing is selected. The line is
constructed in the same way as if the normal plot

routines had been called directly.

Operation

The 'smoothing process used by SMOOTH is based on fitting

cubic polynomials through the data points in such a way that

the resulting line has tangential continuity at each pbint.

Because SMOOTH does not retain all the data pairs defining a

continuous line, the resulting curve is close to but not

equivalent to a cubic spline.

The points created during the smoothing process are spaced

at approximately equal intervals along the line and hence line

coding is is a facility which can be included for a trivial cost

in terms of coding complexity.

The smoothing interval and hence the break interval is
specified in terms of plot inches. This interval is set during
the first call to SMOOTH by the same interactive dialogue which

changes the interval in response to a call with NPi-6. Because

the plot routines may have implicit scale factors operative,

scale factors for X and Y are assumed to be available in SCX and

SCY in the COMMON block SMTHSC. If these factors are 1 or 0,

the scale factor logic is bypassed. (Subrouine SCLFCT can

I provide the current scale factors if required.)

Note that all calls to the plot software are via the

subroutine PLOTD so that SMOOTH is independent of the plot

system on which NERF is installed.

!I

(i) 'SMOOTRING INTERVAL': Prompt issued by the section of

code which provides the facility for changiag the

smoothing interval.

ii

71

IJ

ii

[I

11

5.10.5. The graphics Post processor NERPLT

The program NERPLT was designed primarily for constructing

graphs of the reliability functions calculated by NERF. These

functions are written by NERF into a file that has essentially

the same format as the function files used to define the input

functions. It was thus a trivial matter to modify NERPLT so that

it could plot a graph defined by any function file so that, in

principle, the input functions could also be plotted. Subsequently,

this facility was extended by allowing NERPLT to access the various

functions in NERF to construct the input functions (including

those that do not rely on function files) directly.

NERPLT now provides facilities for constructing graphs

of the NERF input functions, including the density functions,

together with any functiozs represented by function files. The

latter functions can be mixed on a single graph to produce a

ngmulti-function' plot. A multi-function plot uses the first function

as a basis for setting up the graph and establishing scale factors.

Subsequent functions are plotted using the established plot

space and the same scale factors. In this way, the results from

several runs of the program NF can be presented on the mane

graph.

Examples of the output produced by NERPLT were given in

Chapter 3 when describing the input functions and the various

inspection procedures modelled by NERF.

A?1N

It is not intended that the documentation presented here

is complete, especially in ters of the operation and prompt

messages issued by UERPLT. These details are covered more

completely by Mallinpon and Giraham The documentation presented

here covers the operation of the various subroutines which are

not described in the user manual.

Th. operational aspects of NIRPLT are determined by the

main program, PROGRAM NERPLT which executes the tasks portrayed

schematically in Figure 5.38. The subroutine READLF reads the

function files and the subroutine FPLOTS uses the NERF functions

to set up sequences of ordered pairs that represent the input

functions.

Note that the subroutine FPLOTS, in effect, constructs

a sequence of ordered pairs which represents the interpolated 3
function derived from the function file data for input functions

so defined. The graphical output is thus a way of checking:

the performance of the interpolation procedures. The subroutine]
PPOIAT constructs graphical representations of the points

actually used to define one of these functions. (See Figure

3. 1, for example.)

Plotting a sequence of ordered pairs is controlled by the

subroutine PLTS. Because NZRPLT allows the user to define the

scale factors and plot limits, the data must be 'windowed' so 3
that the portion of the function that fits within the plot space

is the only section of the function actually plotted. ThisA

I et- k-$144kAA%

&*A for

li 4"

CIIt

ftgmAre 5.38. LO.C (iuplfrsd) ±aPHDOlM JIUT

windowiAg facility is provided by the subroutines WINDOW,

and COMPRS.

The rest of the code used by NERPLT is supplied by the

HERF library of subroutines. Note that the current implementation

of NERPLT contains special forms of the subroutines PROMPT and ECHO.

These routines do not write any information to the secondary

output file as is the case for. the routines in the main NERF

library. If a record of the dialogue is required, these subroutines

could be modified accordingly.

-3

I

(I

|I

I PROGRAM NERPLT

Function

j Program NERPLT provides an interactive facility for the

construction of graphs of the NERF input functions and the reliability

functions computed by NERP.

SO~eration

The sequence of operations controlled by NERPLT is described

schematically in Figure 5.38. The code broadly follows

the logic shown in that Figure which together with the operational

description given by Mallinson and Graham1 3 should be sufficient for

a FORTRAN programmer to understand the code. The following

points are worthy of mention.

(i) The logical variables listed below are used to control

the sequence of operations.

MPLT: If true, the mult-function plot facility has been

S selected.

ADDPLT: If true, the next function will be added to the

I existing graph.

FPLTS: The current graph is a NER? input function.

Multi-function plots are not permitted if this

I is the case.

APLT If true, at least one graph has been initialised

so that basic input/output operations have been

Jperformed.

TIME: If true, and the graph is multi-function, the

current function is the first on the graph.

(ii) The NEF input functions are initialised by calling

CFIN which reads the control file and initialises the

density functions and the various functions that

are defined by function files. In this way, the input

files pertain to the run defined by the current control

file.

(iii) The output file, containing the graphical information,

has the name 'NAEWPT' where the string:.

denoted by NAME depends on the first function actually

plotted. If the first function is one of the input

functions, NAME corresponds to the run identification

in the control file; otherwise it corresponds to the

name of the first file read by REA24F.

(iv) The subroutine READ4F is similar to RNADFN described in J
Section 3.9.3, with the exceptions that the operator is

asked to specify the file name for the function file

and that several columns of data can be read from the file

and are interpreted as defining several functions for the I
same met of argument values.

J

SUBROUTINE COMPRS(X,Y,X1,Y1)

Function

Given a point kX,Y) inside the plot space and a.point

kX1,11) outside the plots space, COMPRS finds the coordinates

of the intersection of the line joining (X,Y) and (X1,1) with

a boundary of the plot space.

Parameter List

X: X coordinate of the point inside the plot space.

Y: r coordinate of the point inside the plot space.

X1: X coordinate of the point outside the plot space.

Returned as the X coordinate of the intersection point.

YI: Y coordinate of the point outside the plot space.

Returned as the Y coordinate of the intersection point.

Operation

The line joining (X,Y) and (X1,Y1) is compressed, first

in the X direction, by computing the intersection with x-XO or
x -XL. It is then compressed in the y direction by computing the

intersection with y-YO or y-TL.

'I

|--

SUBROUTINE FPLOTS(LU, IFUNC,XMIN, XMAX, YMIN, YMAX, XLA YLAB, X, FY)

Function

The subroutine FPLOTS sets up a sequence 9f ordered

pairs of argument and function values of one of the NERF input

functions. This sequence is intended for subsequent plotting

by NERPLT, and is sufficient to define a smooth curve representing

the function. The generated sequence is not the same as that

which may be used to define an interpolated function.

Parameter List

LU: Logical unit number for the plot file, (not used).

IFUNC: Integer defining the input function . (See paramter

list for FUNC,) Returned to calling code.

XMIN: Lower limit for the range of the argument, returned

to calling code.

XMAX: Upper limit for the range of the argument, returned

to calling code.

YMIN: Lower limit for the range of the function, returned

to calling code.

YMAX: Upper limit for the range df the function, returned to

calling code.

XLAB: Label for the horizontal axis of the graph, returned to

calling code.

YLAB: Label for the vertical axis of the graph, returned to

calling code.

X: Array containing the generated argument values, returned

to calling code.

FY: Array containing the generated function values, returned

to calling code.

Operation

The operator is asked to select an input function. A

valid function must be selected and the program will loop

until a correct entry is made by the operator.

Once an input function has been selected, its range

is determined and values for XMIN, XMAX, YMIN, YMAX computed.

The sequence of ordered pairs is then generated in a straight forward

manner. Note that if a logarithmic plot has been selected that

logarithms of the function are taken before the sequence is returned

to the calling code.

Currently 200 ordered pairs are used to define the function.

If a density function is selected and the associated

random variable is being neglected from the model, the sequence

is not generated and IFUNC is returned with the value, 99.

SUBROUTINE FPOINT(LU,XVAR,YVAR,IFUNC)

Function I

FPOINT constructs representations of the locations

of the nodes used to define the NERF input functions. In the

current implementation the nodes are represented by small squares

centred at the points defined by the sequence of ordered pairs

of argument and function values upon which each input function

is based.

Parameter List

LU: Logical unit number for the file containing the graphical

output.

XVAR: Array containing the minimum value, maximum value and

increment for axis marking for the argument.

YVAR: Array containing the minimum value, maximum value and

increment for axis marking for the function.

IFUNC: Integer identifying the input function.

1. Risk rate function, r 2 (R)= PL(R).1r.

2. Relative strength function ,IF().

5. Crack growth function, a(t).

6. Inverse crack growth function, a -1(a).
8. Strength decay function, R(a). -f

Operation

The assumption is made that the graph has been initialised

and the contents of XVAR and YVAR are correct for the function

being plotted. Each function is treated separately. The appropriate

array of argument values (e.g. BETA for T values for t(a)) is I
accessed. For each argument value, the corresponding function

value is evaluated and the point constructed if within the confines

of the graph, as determined by the parameters XO, XL, YO and YL in

the common block AREAXY.

FUNCTION FUNC(X,IFUNC)

Function

The function FUNC returns a value of an input function

for a given value of the argument, X. The particular input
function is selected by the value of the parameter IFUNC. This
function helps make higher levels of the graph plotting software
less dependent on the precise input function selected.

Parameter List

X: Value of the argument for which the function evaluation

is required.

IFUNC: Integer defining the input function.

1. Risk rate function, r 2 (R).
2. Relative strength function e(t).

3. Density for virgin strength p,(d().
4. Density for age, ppaf).
5. Crack growth function, a(Z).

6. Inverse crack growth function, a- (a).

7. Density for initial crack length pao).

8. Strength decay function, R(a).

Operation

FUNC simply calls the appropriate function sub-program
to evaluated the function selected by IFUNC.

!
!

I

f :"
! .

SUBROUTINE PLTS(XA,F,NUM, DOTS)

Function

The subroutine PLT3 controls the plotting of the curve

defined by the sequence of ordered pairs stored in XA and F.

Parameter List

XA: Array of values of the argument, or variable corresponding

to the horizontal axis of the graph.

F: Array of values of the function, or variable corresponding to

the vertical axis of the graph.

NUM: Number of ordered pairs defining the curve.

DOTS: Parameter controlling the line code used for the curve.

=0, the line is solid.

>0, Line is broken with every second solid section
being DOTS times as long as the intervening breaks.

<O0, Line is broken. Solid sections are DOTS times as

long as the intervening breaks.

This convention is similar to that used for subroutine A,

SMOOTH with the exception that the sign of the control

parameter is reversed. j

The curie is constructed by a sequence of calls to WINDOW

followed by a final call to SMOOTH with NPE-5, to complete the

curve (see documentation for SMOOTH.)

If two adjacent values of XA are identical, then

pen up istructions are issued to WINDOW to ensure that a possible

discontinuity in the function is properly represented.

..... . 2II
_______ U 11

f SUBROUTINE WINDOW(X,Y,NPE,IDOT)

Function

The subroutine WINDOW provides a windowing facility
whereby a sequence of plotted points can be vignetted by imposed

limits for plotting. If the sequence of points represents a

continuous line sequence, WINDOW ensures that the segment between

a point within the 'window' and one outside is correctly

drawn so that it appears to be 'cut' by the plot boundary.

The subroutine is called instead of the usual plotting

Croutines, or the subroutine SMOOTH. These routines are called

by WINDOW after the clipping process has been completed.

Parameter List

X: X coordinate of the next point to be plotted.

Y: Y coordinate of the next point to be plotted.

XPE: Pen control parameter.

z2, the point defined by (X,r) is joined to the last

point.

#2, the point defined by (X,Y) is not joined to the

last point.

All other values of NPE are ignored and are passed

directly to SMOOTH.

IDOT: Line coding parameter. Passed directly to SMOOTH:

refer to the documentation for that subroutine for

details.

Ovoration

The coordinate limits for the plot space are assumed to

be initialised and stored in the common block AURX!. The

limits for x are defined by XO and XL and those for y by YO ard

The point (X,Y) is tested against the coordinate limits I
and the following conditions are identified.

(i) (XY) inside window; last point inside. No window operation I
is required. (.1Y) is stored as kX2,!2) for later use.

(ii) (X,Y) inside window; last point outside. If points are joined,

use COMPRS to find the intersection of the line joining

tX1,Y1) and (X,Y) with a boundary of the plot space. Plot
the intersection with a pen up instruction and draw the
line joining it to the point (X,Y). Store kX,!) as (X2,!2).

(iII) (Xr) outside window; last point inside. If points are
joined, call OOPMHS to find the point of intersection
of the line between (X2,12) and (X,Y) with a boundary of
the plot space. Draw the hlne between (X2,YZ) and that

point. Store (X,Y) as (Xi,ri).

(iv) X1) outside window; last point outside. store (XY) asI (X1,n).

Local variables in WINDOW have the following meanings.

X1,11 Coordinates of the last point outside the window.

12,12 Coordinates of the last point inside the window. .1

X3,Y3 Coordinates of the intersection of the line leaving
the window and a boundary of the plot space.

ICOMP Flag indicating whether the current point is the

first of a sequence of points inside the window.
(ICOMPaO, point is the first outside; ICOMP a , point

is not the first outside.)

[I

5. 11. The Data Preiaration Program, NERPRE

The dAta preparation program NERPRE is, in fact, additional

to the essential requirements for the operation of NERF. The

control file and function files can be prepared using the text

editing facilities provided by the operating system on which

NERF is installed. NERPER provides an alternative method for

the preparation of input data which has the advantage that

the user does not have to learn how to operate the text editor

or the format requirements of the control and function files.

As was the case with NWRLT, much of the operational details

of NERPE are described in the user manual (Mallinson and Graham
13).

The documentation presented here concentrates on details of the

subroutines not covered by the user manual. The documentation

is not intended to be complete, but should be sufficient for

a FORTRAN programmer to understand the code.

Much of the operational character of NERPRE is

determined by the code in the main program, PROGRAM NERPRE,

which is structured to provide multiple options which are

selected, one at a time, by the user. The essential operations

are shown schematically in Figure 5.39. The subroutine SELECT

r performs the tUks of asking the user to specify the next action

to be taken, identifying the action and returning a flag whith

[a value that can be used by PROGRAM NERPRE to jump to the appropriate

section of code. When the action is finished, control returns to

the point where the subroutine SELECT is called to choose a new

action.

K -- - . . - - - - . . m m

S-60

ILt

I!

File.

Figure 5.39. Simplified flow of logic in NRPIM.-

I

ip

' I w • • , I| | II

II II I II

I /

I When the program first starts executulon, a check

that a control file already exists is made. If a file does not

exist, NERPRE executes every data preparation action to create

an appropriate set of data before calling SELECT. This alternative

mode of operation is controlled by the logical variable EDIT which

if false supresses the return to the call to SELECT after each

Iaction. Instead control passes to the next section of code. This
continues until the last action has been made and control unconditionally

returns to the subroutine SELECT. This 'non-editins' mode can also

be invoked by the user selecting the option 'NEW FILE' which results

in EDIT being set false as if a control file did not exist.

An exception to the simple process illustrated in Figure 5.39

occurs if the option 'FUNCTION FILE' is selected. The operation

in NERPRE follows the simple sequence of performing an action

and returning to call SELECT. However, the subroutine FCNFIL,

which is called in the process, contains its own set of optbions

and executes a selection process which to the user appears as

a sub-set of the overall option selecting process. While in

FCNFIL, noneof the general options are available and while

in PROGRAM NERPRE, non of the options in FCNFIL are accessible.

Another exception is, of course, the code associated with the

option 'FINISH'. The subroutine CFOUT is called to write a new

control file and the execution of NERPRE ceases.

I
PROGRAM NERPRE and the subroutine SELECT provide most of

Ithe option selecting and control logic. These two code modules are

I op

described in this Section. The subroutines associated with the -

preparation and editing of a control file are described in

Section 5. 11. 1 and those associated with the preparation of

function files are described in Section 5.11i.2.

-63~ 514 3

PROGRAM NERPRE

Function

PROGRAM NERPRE provides an interactive facility for the

preparation and editing of control and function files for input

to NERF.

Operation

As described in the text of Section 5. 11, the operation

c of NERPRE follows the simple option selecting and action performing

logic shown in Figure 5.39. The heart of the code, as far as

this aspect is concerned is. the computed GO TO statement following

the call to SELECT. The text identifying each option is, of

course, stored within SELECT. However, the same text strings have

been placed in comments heading each section of code to make

identification of the code associated with each option easy.

The object of the editing or preparation process is to

ensure that the variables in the various common blocks have

the correct values. These variables have the same names and meanings

as those used in RERF. Input from and output to the control

file are controlled by the subroutines CFIN and CFOUT which

are supplied by the NEEF library. The code in NERPRE does not,

therefore, directly influence the format of the control file.

The code associated with each option performs the allotted

tasks in an obvious manner.I
!

I

I/*

SUBROUTINE SELECT(TXT, NCH, IOPT)

Function

The subroutine SELECT controls the selection of one of

the options provided by NERPRE by seeking a response from the

operator and setting ZOPT accordingly.

Parame ter List

TXT: Character string containing a suitable request for

an operator response.

NCH: Number of characters in the string stored in TXT.

IOPT: Integer which is set to a value that will identify the

option selected by the operator.

OPeration

The possible user responses are stored in the array

RESPON. Up to 15 characters can be used to identify an option. -

The array NCHR contains the number of characters actually used

to identify each response.

In the cuirent version, the response is tested word by 1
word rather than character by character so that at least 5

characters must be correct for a response to be identified. J

The response 'LIST' will result in all the correct I
responses being listed on the remote terminal.

I
|I

5.11.1. Preparation and editing of the control file

Much of the code in PROGRAM NERPRE is associated with

the manipulation of the data in the common blocks that will

eventually be written into the control file by the subroutine

CFOUT. A given option may change a single variable or a whole

group of variables, depending on the nature of the data

stored in those variables.

In the majority of cases, the subroutien CHANGE is called

to manipulate the data. This subroutine detects whether the

logical variable EDIT is true and if so can inform the operator

of the contents of the variables before new values are entered.

CHANGE is actually an entry point in the subroutine SELECT. This

means that the text stored in the array RESPON is available for

the construction of the prompt messages.

The parameters for the density functions are manipulated

by the subroutine PE'CNG. This localises the code associated with

the density functions so that extensions to the library of

standard functions evaluated by NERF can be easily extended.

Some variables, such as the run identification and the

logical switches are manipulated directly by code in NERPRE.

It is assumed that the operator will have no interest in the

*j existing values of these variables and no facility for informing

the operator of their values is provided.

10 A 4' W NF R A COMPUTER PROGRAM FOR Til NUMIR CAI tVAtIA A) 7/15RE PI I 1 FUN. . UAERONA)ICAL RESIARCHIt AllS
ME I OURN , lAUSIRAt IA D MA SON I A III

1 t I)A., /SR(397 42 N

I~ E0l

lmlm~*

1-251
Mu~

U U3

The option 'CHECK' allows the operator to scan all

the data that will be transferred to the control file. The

data is displayed in a meaningful way on the remote terminal

by the subroutine CHECK.

Nte that BERPRE makes liberal use of the subroutines

TXTIN, INTGIN, REALIN and PROMPT together with the function

INTE.To These, with the exception of PROMPT are obtained from

the main IERF library.

As was the case with NERPLT, 1ERPRE has its own versions

of PROMPT and ECHO to suppress the output of information to -

the secondary file.

I
I.

I,

SUBROUTI1NE CHANG(TXT2, NCH2, VAR, NVAR, NTYPE)

Function

The subroutine CHANGE controls the manipulation of the

data in the array VAR.

Parameter List

TXT2: Text string identifying the editing operation.

NCH2: Number of characters in the string stored in TXT2.

If NCH2 is zero, the indentification prompt may be

constructed from the text strings stored in- RESPON.

(CHANGE is an entry point in SELECT.)

VAR: Array containing the variables to be changed.

NVAR: Number of variables in VAR.

If NVAR is zero, then CHANGE will select the number

of possible variables from information stored within

the routine and accept as many values as the operator

spe cfies.

NTYPE: Integer identifying the editing action. (Generally, it

corresponds to the value of IOPT returned by SELECT.)

Oeration

The operation of the subroutine depends on the status

of the logical variables EDIT snd VALUE.

(i) If EDIT is false, the user is given no choice and the
data in VAR is overwritten. If NCH2 is zero, the

appropriate text string in RESPON is output to

identify the data required.

3 For those cases where the required data are a sequence

of numerical values of unspecified number, data stored

JJ __. ... ,,,,, Im

in NVLIH is accessed to determine the maximum permissible

number. The subroutine MEALIN in then used to interactively
construct the sequence.

(ii) If EDIT in true, VALUE is accessed and if required, the

existing numerical data in VL are displayed and the

operator given the chance to negate the editing action.

Otherwise, the data is renewed using the same methods

as apply when EDIT is false.

I.

SUBROUTINM CHECK

Function

The subroutine CHECK displays the information that will

be written to the control file in an informative manner on

the remote terminal.

Ogeration

The bulk of the code in CHECK is concerned with the

construction of prompts which will inform the operator of the

values of the variables in the common blocks that are accessed

by CFOUT. These prompts are designed to be informative in a way

that allows a ready check of the accuracy of the data.

The amount of data Is too much for it all to be displayed

on a VDU screen at the same time. CHECK consequently displays

a section of the data and then pauses, waiting for a user response

before continuing This pause is provided by the subroutine
PAUSCT. It is envisaged that the code associated with effecting

this pause could be machine dependent and a separate subroutine

was provided. The subroutine is very short and no separate

documentation is required.

1
!
!
I

,!

iF 's mm I N I

SUBROUTINE PDFCNG(TXTLAB, NCH,K, Ci)

Function

The subroutine PDFCNG provides an editing facility for

the parameters defining the density functions.

Parameter List

TXTLAS: Text string identifying the random variable for which

the parameters pertain.

NtZ: Number of characters in the string in TXTLAB.

K: Integer identifying the type of standard density function.

1. Log normal.

2. Extreme value.

3. Gamma.

.C: 3 word array.

41(1): Dispersion parameter (k).

C1(2): Minimum value parameter (e). 1
C1(3): Location parameter ().

Operation

The logical variables EDIT and VALUE are accessed. If

both are true, PDFOUT is called to display the parameters. The

operator is asked if the existing values are acceptable. It they

are, no further action is taken; otherwise the operator is

asked to specify. first the type of density function and then the]
values of the appropriate parameters.

ij'

5-Af~

I

I UBROUTINE pDFOUT(KCl)

Function

The subroutine PDyOUT displays the parameters defining

a density function on the remote terminal.

1Parameteir List

K: Inter defining the standard distribut;ion.

1. Log normal.

2. Extreme value.

3. G05n-.

CI: 3 word array.

C(l): Dispersion parameter (k).

i CI(Z): Minimum value parameter (o).

C1(3): Location parameter
(v).

Ouratio

PDFOUT idintilies the type of distribution and
then

constructs an appropriate informative
message.

PI
I
I

,I

SUBROUTIN4E VALOUT(ARRo N)

Function

The subroutine VALOUT displays the nnmerical data stored

in ARE on the remote terminal.

Parameter List

AR!: Array containing data to be displayed.

N: Number of variables stored in ARB.

Operation

The code in VALOUT constructs and displays prompts that

are appropriate to the amount of data stored in ARR.

"i
ii

3. 11.2. Preparation of function flies.

The preparation of function files is controlled, almost

entirely by the subroutine FCNFIL which is called by RWPRE

in response to the selection of the option 'FUNCTION FILE'.

FCNFIL operates a sub-option selection process which

allows function files to be created or edited. The format

of the files corresponds to that specified by the subroutine

READFN described in Section 5.9.3.

On entry to FCNFIL, the operator is ased to select

whether an existing file is to be edited or a new one created.

In the first case, the file is accessed and its contents read

into core. In the second case, a dialogue prompts the operator

to enter the initial set of data for the new file. After

receiving the header text, the subroutine DhTIN is called to

input the sequence of ordered pairs.

After the function file data has been initialsed by the

above actions, the operator is advised of the editing options

available. These are described in the description of the subroutine

FCNFIL below.

Note that, an the code is currently constructed, the editing

.t Loperations can only operate on the data Initialsed as FCNIIL Is

entered. To change the data by, for exampl reading a new file,

the option 'SAVE' must be selected and control returned to the

main program. FCNFIL can then be re-entered and the data changed.

SUBROUTINE DATIN(X,F,NUM)

Function

The subroutine DATIN controls the entry of a sequence

of ordered pairs from the keyboard of the remote terminal or

VDU.

Parameter List

X: Array into which the values of the argument are

stored and returned to the calling code.

C
F: Array into which the values of the function are

stored and returned to the calling code.

H)M: Number of data pairs read. Returned to the calling

code.

Operation

Subroutine REALIN is used to read a single pair of values
of argument and function. If the value of the argument is 99

and the function 0, the sequence is terminated. (Note a zero

function value will result if the second data value is
(omitted by the operator so that the list is tezminated by

entering 99 on the keyboard.)

The maximum number of data pairs, is set within

DATIN at 150, to correspond to the storage allocated

for input functions in XEWF.

I
I

o !L

I SUBROUTINE FCNFIL

Function

The subroutine FCNFIL provides an interactive facility for

I the preperation and editing of function files.'

Operation

* C The operation of FCNFIL centres around the code starting

with statement number 80 which prompts the operator to select

one of the available options.

Prior to reaching this statement, the data for the function

file is initialised by either reading an existing file or

entering a suitable set of data from the remote terminal.

The options and the facilities they then provide are described

Ibelow.

(i) INSERT

*A continuous block of ordered pairs can be inserted

immediately following a pair which is identified by

specifying the value of the argumentE(
Ui

r A continuous block of ordered pairs starting with

7 a pair identified by the arguaent value 4a be deleted.

II|

5.7i% , 76

(iii) CHANGE

A data pair, identified by the argument value can be
changed.

(iv) TITLE

Selected lines of the title can be re-inserted.

(v) CHECK

The contents of the function file can be checked by
/

having them displayed on the remote terminal.

(vi) SAVE

The file can be saved on disk and the operator then

has the option of returning to the main program or

continuing the editing process for the same set of

data.

(vii) CANCE

The option 'cancel' allows the operator to abort an

editing session and permits immediate return to the
main progra. The operator is given a second chance to

confirm this choice as a return to the main program will

destroy the current set of data. :

The code in FCNFIL is a direct implementation of these

actions and should present no difficulties to the FORTRAN

progra--er.

i
' i

i II | I i

1. Payne, A. 0. and Grandage, J. M. A probabilistic approach to

structural design. Proceedings of the First International Conference

on Applications of tatistics and Probability to Soil and Structural

Engineering, Hong Kong, sept. 13-16, pp. 36-74 Hong Kong University

Press, 1971.

2. Payne, A. 0. A reliability approach to the fatigue of structures.

ASTM STP 511 pp. 106-155, 1972.

3. Diamond, P. and Payne, A.0. Reliability analysis applied to

structural tests. Proceedings of Symposium on Advanced Approaches

to Fatigue Evaluation, ICAF Miami Beach. NASA SP-309, 275-332, 1972.

4. Payne, A. 0. and Graham, A. D. Reliability analysis for optimum design.

Engineering 2racture Mechanics, v. 12, pp. 329-346, 1979.

5. Mallinson, G. D. On the Genesis of Reliability Models Department of

Defence Support, ARL Structures Report.

6. Ford, D. G. Reliability and structural fatigue in one-crack models.

Department of Defence, ARL Structures Report 369, 1978.

7. Ford, D. G. Structural fatigue in one-crack models with arbitrary

inspection. Department of Defence, ARL Structures Report 377, 1979.

8. Ford, D. G. Coarsely random cracking in one-crack fatigue models.

Department of Defence, ARL Structures Report 382, 1980.

9. Hooke, F. H. A comparison of reliability and conventional estimation

of safe fatigue life and safe inspection intervals. ICAF, Miami

3each, NASA SP-309, pp. 667-680, 1972.

10. Hooke, F. H. Probabilistic design and structural fatigue. The

Aeronautical Journal, pp. 267, 1975.

11. Hooke, F. H. Aircraft strctural reliability and risk theory -

a review. Proceedings Symposium on Aircraft Structural Fatigue,

Department of Defence, ARL Structures Report 363, and Materials

Report 104, pp. 299-333, 1977

12. Hooke, F. H. A now look at structural reliability and risk theory.

AIAA Journal, v. 17, No.9, pp. 980-987, 1979.

13. Mallinson, G. D. and Graham, A. D. NERF - a computer program for

the Numerioal z.aluation of Reliability 2Unctiona: User Manual.

(to be published).

2.

14. Rice, J. A Metalgorithm for Adaptive Quadrature Journal of the

Association for Computing Machinery, Vol. 22, No.1,

January 1975, pp. 61-82.

15. Fritsch, Kahaner and Lynesa. Double Integration Using one-Dimensional

Adaptive Quadrature Routines : A Software Interface Problem. ACM

Transactions on Mathematical Software, vol 7, No.1, March 1981,

pages 46-75.

16. McKeeman, W. M. Algorithm 145, adaptive numerical integration by

Simpson's rule. Comm. ACM 2, 12 p.604 , 1962.

17. Lyness. Notes on the Adaptive Simpson Quadrature Routine. JACM,

Vol.15, pp. 483-495.

18. Osborne. Asymptotic Error Formula for Numerical Quadrature.

J. Inst. Maths Applics (1974) 13, 219-227

19. Robinson. Adaptive Gaussian Integration. The Australian Computer

Journal Vol.3, No.3, Aug. 1971.

20. Lyness and Kaganove. Comments on the Nature of Automatic Quadrature

Routines. ACM Transactions on Mathematical Software, Vol.2, No.1,

March 1976, pp. 65-81

21. Ahlberg, J. N., Nilson, g. N. and Walsh J. L. The theory of Splines

and their Application. Mathematics in Science and Engineering, Vol.38,

Academic Press.

22. Ralston, A. & Rabinowitz, P. "A first course in numerical analysis"

2nid ed., 1978. McGraw Hill, N.Y.

I

' I K

1.71

NOTATION

a Lower limit of integration over x.

a or a(t) Crack length, function.of age.

ae n Constant value for crack length.

ad Crack length inspection threshold beyond which
an inspection is 'perfect'.

a, Crack length at initiation;
or, ieth coefficient defined by equation (4.99) and

used to solve the spline equations.

a1 Crack length corresponding to the fatigue life
limit, if.

a0 Crack length at tzO, i.e., initial crack length.

am x Maximum initial crack length.

A Jeth weight in n point quadrature sum, equation (4.14).

b Upper limit of integration over x.

b I iath coefficient defined by equation (4.97) and
used to solve the spline equations.

c Constant in density functions.

C, ci'th coefficient defined by equation (4.98) and
used to solve the spline equations.

Cd(a) Crack detection function.

di See equation (4.91).

D1 Subspace of uncracked structures.

Da Subspace of cracked structures,

D3 Subspace of structures that have passed a
failure criterion.

dt Small interval of time.

l e Minimum value parameter, (see equation 3.3).3 e* Scaled minimua value parameter.

I(s) Expected time to failure.

s(R Ft) Zxpected value for strength.

3(njt) Exbpeted value for the failing load.

[-

f (R) See equation (2.10).

r(t) Function of time (arbitrary).

f(t,n0) Arbitrary function of t and no, see equation (3. 1)

1(z Arbitrary function of x.

f noLimit for no# defined by equation (2. 80).

f no(R) Limit for no, dependent an the value of R.

n~~(~:nDfinedR for et~sia (397f2).min

f d (R) Demitned n b de in (3.7euaio2). 2)

SR, f(Rt 0 no integrand function for the dontitio or

R~fZ the failure density for strength arising from
f atigue life exhaustion.

F Random variable representing the time of f ailure.

F (z,y, Z) Integrand function for the z integration
I of a nested integration sequences equation (4.41).

F (yOz) Integrand function for the y integration of
ya nested integration sequence, equation (4-40).

F z) Integrand function for the z integration of
(Z a nested integration sequence# equation (4.39).

F O~ao)Integrand function for the ao integration of

a nested integration sequence, equation (.5)

Integrand function for the OC integration of
a nested integration sequence, equation (.5)

Fp~e)Integrand function for the 0 integration of
a nested integration sequence, equation (3.138).

g(R) See equation (2.121.

1R(t-nO) no integrand function for the failure, densityI
for strength.

G(4P'O)Function used In the evaluation of the loss factor, 3
doefIned by equation (5.60)o

G , Function used for the evaluation of the loss
factor, defined by equation (5.63).

h Length of integration interval, i.e. h b-a.

Length of the i'th interval; used for spline
interpolation. (Equation (4.70))

EH(zt) Loss factor, equation (2.40).

LosS factor, in terms of the random variables
used in NEF. Equations (2.43) to (2.45).

HS(x) Heaviside step function.

i Suffix, usually a particular value in a series.

I(a,b) Integral of f(z) over the interval [a,b), equation (4.1).

Ii(xi,+i) Integration of f(z) over the i'th interval,

In(ab) Numerical estimate of I(ab) using n integrand
evaluations.

In(Z1,Z2) Numerical estimate of a multiple integration where
z is the outermost integration variable.

I y(y,z) Integrand for the y integration of a multiple
integration sequence.

I Z(z) Integrand for the z integration of a multiple
integration sequence.

Izn(z) Integrand returned by a numerical evaluation
procedure, equation (4.45).

Index denoting a particular value in a series.
C] Often used for the age values defining r().

k Index denoting a particular value in a series,

or, Dispersion parameter for a density function.

K Total number of time values for which the
reliability functions are evaluated.

Klin8 Number of nodes In the e direction for the losefactor interpolation table.

K' Number of nodes in the interval ti o
the lose factor interpolation table.

f2 Number of nodes in the intervalCRm R for

the loss factor interpolation table.

UetmmMmwI

1 I r Average load application rate.

1f(lanOt) Loss factor (see equation 5.183).

IL Random variable representing applied load

LG, k Table entry of log(G ek) equation (5.129)0

LG1 Interpolated value of log(G) for the J'th P line.

LG Interpolated value of log(G) for the J+1'th
P line, see equation (5.131).

O(Z) Second derivative function as used for spline
interpolation, equation (4..69).

a Value of a(x) at zzi,

K Number of nodes used to define f(x) for spline
interpolation.

n di Lower Limit for n0 for the probability of

detection.

nfl Lower Imi3t for it, for the risk of fatigue -life
exhaustion, equatlon (3.85).

nf 2 Upper limit for no for the risk of fatigue life

exhaustion, equation (3.85).

'R1 Lower Limit for no for the -density for strength,
equation (3.88).

aR2 Upper limit for no for the density for strength,
equation (3.88).

no Initial age. -}
no,ain Lower limit for n0 after default limiting.

Upper limit for no after default limiting. A
a I Lower limit for no for the probability of

failure, equation (3,80).

a2 Upper limit for no for-the 1ro'oability of

failure, equation (3.80).

1 Number of integration levels.

ps.(a0) Density for initial crack length.

L

6g93

PffI(t.no) n0 integrand function for the first rf(t)

Pffz(tfQ) no intagrand function for the second rf(t)
integration, equation (3.85).

Pf5 (t nO0) n0 integrand function for ra(t), equation (3.84).

fvly(t) rV (t)PS(t), equation (3.83).

PF(t) Density for the time to failure..

p 2(n 0) Density for initial age.

SPR(RI F>t) Density function for strength.

PR(Rit) Failure density for strength.

Px() Joint density function for the random variables X.

po(e) Density for virgin strength.

P6 () Density for age (given t) 5 generally accounts forprevious inspections.
p (Ia) Density for age given ao .

Pdet(ti) Probability of detection at the inspection at ti,.

Pdot(t'no) n0 integrand function for the probability of

detection, equation (3.82).

P F (t) Probability of failure.

PF(t,no) n O integrand function for the probability of

failure.

P (L) Cumulative proability function for the applied load.

I)Probability of load exceedence.

j Ps(t) Probability of survival.

P (t) Probability of survival just after an inspection.

P-(t) Probability of survival Just befor an inspection.
IL

S (t-ti4) Probabilty of sUrvival of-a population of replacement
structures, equation (2.jo).

_-I

Qtf(x):a,b n point quadrature sum, equation (4.14).

r Index denoting level of subdivision in the

adaptive Simpson integration algorithm.

r(t) Total risk rate.

rf(t) Risk of fatigue life exhaustion.

rfP , no). P ff i (t, no) .PS(t).

rf2 (tn0) pffz (tno).PS(t).

rk(t) Risk rate for the k'th subspace, equation (2.20).

c rlj Tlmit risk rate for inspection procedure.

rmean(t) Mean riak rate, equation (3.175).

ra(t) Risk of static fracure by fatigue.

ra(t, pfa(t'n0) .P'(t).

r,(t) VirgLn risk (rik rate for uncracked structures)*

rl:e) Instantaneous risk for uncracked structures in D1,

r 2 (A5 lnst'antaneous risk for cracked structures in D2 .

R Random variable representing strength.

Q EWE()) Median strength decay function.

R.'$(S), equation (2.84).

R;ne equation (2.90).

R (no() ac- (n,f)f<), equation (3.54). Lo er bound for

R iven no and p for the D2 subspace. _

Rmax Maximum value for applied load.

Rin Minimum value for strength, following defaultSIR limiting,

B1 Mesh variable for the # direction of the loss
factor interpolation table, equation (5.83).

,K Mesh variable for the e. direction of the loss

factor interpolation table, equation (3.88).

R0 Median virgLn strength.

R PProof load.

I

j s(x) First derivative function; used for spline
interpolation, equation (4.64).

Value of s(x) at x 1 .

S(6-'f 1o~t'ti) Inspection removal function, equation (2.52).

S(t) Inspection removal function derived from the
aCrack detection function, equation (5.25).

(,ZL r) Simpson 3 point rule for the rth subdivision,3 requation (4.6).

S r(x,axr) Simpson 7 point rule for the r'th subdivision,7 r equation (4.7).

t Time.

T Median time, or age.

:Sd Ago corresponding to ad (after default limiting).

tf Fatigue life of a given structure.

if .Median fatigue life, after default limiting.

Upper bound for 0 for a D2 domain bounded below

tf(R) Upper bound for P for a D2 domain bounded below

by R%--'(P), equation (3.50).

t Crack initiation time for a given structure.

T Median initiation time (or initiation age).

ti Time of j'th inspection.
ti 'th time value for the evaluation of the

reliability functions.

tn Specified evaluation time (there are N values).

tPA Specified time for the calculation of strength
functions.

to Initial age (same as no).

T(t) General reliability function, equation (5.154).

T o(n o) Term depending on no .

T12 Trapesoidal 2 point rule, equation (.26).

T Trapezoidal 3 point rule, equation (b.27).

5'96 s

T v(t,n20) Term for virgin structure contribution to the
probability of detection, equation (5.174).

T v(t) Correction term representing virgin structure

contribution to PS(t), equation (5.180).

T(IaTerm evaluated by the function FALP.

T(f) Term evaluated by the function FBET.

v Location parameter, equation (5.33).

ve Scaled location parameter, equation (5.36).

x Vector of sample values of the random variables X.

x General coordinate.

x, i'th value of x. Used to denote nodes in thespline interpolation or used to define the initial
subdivisions in the adaptive integration algoritaims.

'I'max MaxZmum value in the sequence of values of Xi .

Miinin Minimum value in the sequence of values of z i . -.

X x 1 Sample value for X1.

x2 Sample value for 12.

Saple value for XC.

Random variable representing relative fatigue life.

X2 Random variable representing initial .crack length. j
X Random variable representing relative residual

3 strength.

y General coordinate.

y(x) General function of x, esp. spline interpolation. I
Y'(x) 1/d.

D First order approximation to dy/dx at x zx ,
yi

Y1 Value of y at x-=. I
yI(z) Lower limit for a y integration in a nested

sequence,

y2(z) Upper limit for y integration in a nested
sequence,

I

J I Transformed random variable used to generalise
the density functions, equation (5.35).

f z General coordinate.

Zl Lower limit for an integration over z.-

Z z2 Upper limit for an integration over z.

Z Standard random variable, equation (5.33).

aVirgin strength (Random variable and sample value).

o' Lower limit for a& resulting from a prvof
load inspection, equation (2.58).

C '(nof) Lower bound for oL, given no and for the

D2 subspace, equation (3.52).

0C See equation (2.70).

t hDefined by equation (5.87).

0(o1w Defined by equation (5.106)-

OCT 4. value on the line .f)- R see Figure 5.14.

Kli7-I o.value on the maesh line next to the line,

(see figure 5.14.

a'max Upper limit for d-.

Maximum value of the .Cl's, equation (5.79).maax

O dn Lower limit for a.

* Iumn Miniua value for all the j', equation (5.78)

04 Lower bound for a& for the D1 subspace of uncrackedv Istructures, equation (3. 5?).

01 Lower limit forwfor the first integration, over o(made

Iby the function hEET.

a'2 Upper limit for the integrations over 4 made by
3 2 the function IPET.

03 o Lower limit fora.for the 2nd Integration3 over ... made by the function FlIT.

- I_ - I

at j Lower Limit for o. on the line :Pj . Defined

by equation (5.74) and used for the loss factor
interpolation table. ..

Upper limit for o(on the line (-I 5 . Defined

by equation (.5.75).

p Random variable representing age, equation (2.28). .

(Rnan/, as used in equation (2.72).

See equation (3.65). Also used in equation (5.136).

Pd(nO) LImit function for , defined by equation (3.51).

P value defining the translation of the proof load
boundary, equation (3.53).

j'th value of P , as used to define the function '(f). .!

(i value arising during the interpolation of the

loss factor near the line 23 m.aff(i), equation (5.137). A

Pa Max.mum value of t/x 1 o C - no).

pain Minimum value of t/x 1 .e (-no).

Pp'R Lower limit for P for an integration along the
line RzAr(p) in D2 , equation (3.39).

Pp,R Solution of RR p (P/ (fI(no, p)).

P' min As for PpR ut with RaRin.

P1 (nO) Lower bound for 0 given no , equation (R:58). 1
p1 Lower (limit for integration of F#(f). equation (3.156). J
Pa Upper limit for integration of F (t), equation (3.156).

i'th constant, defined by equation (4.93) and used
for the solution of the spline equations.

Coefficients in expansion for truncation error associated j
with quadrature um, equation (4. 15).

= 1 f Z if*. 0 otherwise.

Convergence criterion, typically 10-.

"abs Absolute error cwiterion, equation (4.2). I

i ...

I
t

eact Actual error incurred during a numerical integration,atequation (4o43).
Eent Estimated absolute error, equation (422).

*-I Error associated with integration over the interval,x,.x 14l1 , equation (4.24).
6 in Numerical parmeter used in integration algorithm

to control errors, equation (4.44).

6 Error associated with the integration rule,
equation (4.16).

F nx(mi) Error associated with the x integration in a nested
integration sequence, equation (4.61).

f n(z) Error associated with the y integration in a nestedintegration sequence, equation (4.61).

EreI Relative error criterion.

LylabsAbsolute error criterion used for the z Integration#y, abs .(resulting from the behaviour of the y level integration.)

E z-) Error associated with the evaluation of the zz !integrand, equation (4.49).Iz, abs Absolute error criterion used for the y integration,

(resulting from the behaviour of the z level integration.)

L' See equation (4.34).

ij Coefficients used in quadrature aum, equation (4. 14).

A Coefficlentes, defined by equation (4.93) and used in
the solution of the spline equations.

Standard deviation.

FGamma function

M(t) oryo(f) Relative strength function.

7 dyv/df .

SA€ r Interval length for the r'th level subdivision in
the adaptive Simpeon aprithm, equation (4. -12).

!
I

s~ 5,90

Ai. .Cross Reference I sting for Subroutines and Functions

The table in this appendix lists the subroutines and function

subprograms in NEll, NERPRE and NERPLT in alphabetical order.

Against each, the page number for the documentation in this

report is given together with a statement of the function

of that sub-program.

The source code for MW resides in five files, with

the sub-programs arranged in hierarchical order. These files

are named NERFPO.FOR to ?IRIP. FO with NERFPO.FOR containing

the . sub-programs that are highest in the hierarchy. The

program N1ERPLT Is stored in a file called NERPLT.FOR and

NERPRE in NERPRE.FOR.

The location of each subroutine in the source files

is indicated by the numbers 0, 1, 2, 3, or 4 for the NERF

routines; PRE for NERPRE and PLT for NERPLT. 1

/ I

Name File Page Operation

ADAPTO 3 195 Outermost integration.

ADAPT1 3 198 Middle integration.

ADAPT2 3 168 Inner-most integration.

ADAET 3 177 Initialise all integration alga.

ADVNICE 0 262 Construct time sequence.

,LOG1 2 495 Log function.

ALPHAP 2 434 Find p

ALPSET 2 331 Initialise pj(e).

ALPTAB 4 356 Find . corresponding to K.

C ARROUT 4 486 Write 2. d. array.

ARRPLT 2 520 Contour map 2.4d. array.

BETALM 1 440 Find 0 limits.

BETCNG 2 332 Change pf(p) for new t.

BETSET 2 333 In~tia.lise po(f)

CHANGE PRE 567 Edit data for control file.

CHECK PRE 569 Display control file data.

CFIN 0 246 Read control file.

CFNEW 0 286 Update control file.

COMPRS PLT 551 Window a line.

CONT 4 524 Contour map routine.

CRK DEV 2 307 Evaluate da/dt

CRKGR 2 308 Evaluate a(t).

CREINV 2 310 Evaluate a 1 (a).K DATIN PRE 574 Input function file from VDU.

DERIV 3 222 Derivative from ordered pairs.

DIAG 4 526 Diagonal interpolation.
ECHO 4 475 Record user responses.

ERROUT 3 179 Integration error handling

EXP1 2 496 Exponential function.

EXTIME 3 492 Run time monitor.

FALP 1 410 Eq. (5.182).

FeET 1 413 Eq. (5.186).
I FCNFIL PRE 575 Edit function files.

FIT O I 418 P 4et(tao).

FDSR1 1 460 Integrand for f2 (Rt,%),

R l

Name File Page Operation

FINISH 3 493 Terminate program operation.

FINTRP 3 219 Spline interpolation.

FLDIO 1 470 Pao(AO) R,fZ(R' t o) ,

FLDW 1 461 p%(,o)E(R, t, no).

FLPROB 0 286 Strength functions.
FNOR 1 436 f (R).

FPDCT 0 420 Prbability of detection.

PPLOTS PLT 552 Set input functions for plotting.

POINT PLT 554 Plot ordered pairs.
PRFO 1 449 no integrand for rf(t).

FRF1 1 452 Integrand for pff1(t,n)o

FRF2 ? 433 Integrand for pff 2 (tzo).
FMLTO 1 14.21 General no integrand.

F12 2 437

FRVO 1 424 r (t).
FSIZE 4 533 Character string for a number.
PSOLVE 3 227 Solution of equation.

FSOLV2 3 227 Solution of equation. J
FUC PLT 555 Input function evaluation.

GADJST 1 383 Discontinuity in loss factor. J
GaLP 1 376 oLnterpolation for lose factor.

GRID 4 523 Draw interpolation grid.

GSTAR 1 378 Evaluate G(.,,). I
GVAL 1 349 Evaluate G(, ,) .

READ 0 295 Write heading on output files.
INDMI 3 232 Index location.

INDLOW 3 233 Index location.

I1F11T 3 199 Summary for integration.

INFLE1 3 201 Error estimate for ADAPTI.

INFL 2 3 202 Error estimate for ADAPT2.

INFST 3 203 Initialise error processing.

INFSOP 3 204 Suppress inlegration infornmtion.
INITAB 4 358 Initialise lose factor interpolation.

IXTZST 1+ 476 LoSLca2 input from terminal.

I I I I i i , ,

I 3~S93 "

I

I Name File Page Operation

INTGIN 4 477 Integer input from keyboard.
INTPLT 2 512 Contour .map of integrandC
IR OUT 4 485 Write 2. d. integer array.
MERGE 3 235 Merge two sequences of numbers.
NERF 0 241 Main program for hERF.

ERPRPE- PRE 563 Main program for NERPRE.
NERPLT PLT 549 Main propam for NERPLT.
NODES 1 364 Set nodes for los factor terms.
OUTPUT 0 296 Write output to files.
P 4 527 Map from array to physical space.
PALPHA 2 334 p,, (00.
PAUSCT PRE 569 Pause while displaying data.
PBETA 2 335 P)
PDF 2 336 Density function evaluation.
PDFCNG PRE 570 Edit density function parameters.
PDFOUT PRE 571 Display density parameters.
PDFSET 2 338 Initialise densities.
PLOTD 4 535 Plot routine for SMOOTH.
PLTPNT 2 515 Plot evaluation points.
PLTS PLT 556 Plot sequence of ordered pairs.
PLTSET 2 503 Initialise outer integrand store.
PLTSTR 2 504 Store outer integrand evaluation.
PENO 2 341 Pao(a).

I PROMPT 4 478 Message to terminal.
PSI 2 312(PSISET 2 318 Change nodes for i(p).
PSI EV 2 316 dy/dA.

I PSINV 2 317 f().
RANGE 3 229 Range limiting.
READFN 4 448 Read function file.
READF PLT 550 Read function file - many functions.
RALIN 4 480 Real number input from terminal.
IPSET 0 2,1 Set nodes for p ff(t.no)
RINTV 1 366 Integral term for loss factor.

RKTAB 4 360 RK from 4L; lose factor table.p K

I I II I I i i - i =

I
Name File Page Operation I

RLGAN 2. 367 Integrand for loss factor term.

RLINE 2 522 Construct R.aeLT(#) .on graph. J
PLOAD 2 321 r 2 (R).

RLOSET 2 322 Qange nodes for ra(R). j f
RIONEM 2 342 Normalise density for ao.

RNOSET 2 343 Initialise density for so.

RSKLOG 1 279 log(r(t)) and other functions. J
RSKTOT 1 274 r(t) and other functions.

SCLFCT 4 541 Find plot scale factors. j
SEEC! PRE 564 Select new option.

SETGRF 4 536 Initialise plot space. I
SETTAB 0 253 IAitialise lo8 factor table. j
SINSP 1 325 Inspection removal function.

SMOOTH 4 542 Graphi cal smoothing.

STarN a 319 !(a).

TXTIN 4 483 Text input from terminal.

VALOUT PRE 572 Display data.

WINDOW PLT 557 Control windowing operations. I

II

& I ,

j A.2. Definitions for variables in COMMON

The variables stored in the various common blocks

used by NERF are listed in this Appendix. Each variable

is listed with its mathematical symbol, where appropriate

and a statement regarding the significance of that variable.

i Note that the size of an array variable is indicated

and that logical variables are denoted by the word 'logicall

in the symbol column. For a logical variable, the condition

represented by the value, true' is given under 'significance'.

I
I

.1

576

Name common Symbol Significance

Elo de

ALPI(150) ALPOOM j Lower limit for a for the 3'th
(3 column of the loss factor table.

.ALPIN(I10) ZINTCOM. A1j Lower limit for a.L for the j3th
column of the table of integrand
values.

ALPZ150) - ALPO 0Upper limit for oL for the j th
column of the loss factor table.

ALP21N(100) ITCOM IUpper limit for at for the j3th I
column of the table of ±ntegrand
values l

BLPC1 CFCOM k Dispersion parameter for %0
ALPC2 CFCOM 0 Minimum value parameter for L0

ALPC3 CFCOM v Locatl*n parameter for 1.
ALPOO INTOO logical Variations in X1 ignored.

ALPMAX PARCOM tmax axaimu value for / . J
ULPIN PARCOM A n Minimum value for f- .

ALPV PARCOM O Current value of a-.

AVGLT RLDC 2p(r) Expected time to failure. l
AVORS RISKCK E(F).P F(t)

BATCH BATCH logical Current run is in batch mode.
BETA(300) PSIOOM jValues of 19 used "to define f'(O).

Also used to store interpolation
tables.!

BETC1 CFOOM k Dispersion parameter for X1,

BETC2 CFCOM • Minimu value parameter for X.I f

BITO CFCOM v Location parameter for ;_I-

BITCON INTOON Logi.cal Variations in X 1 ignored.

BETINT(100) INTOOM jValues of 0 used to define integrand
table, (used for integrand maps.)

BETJD PSIDIF Ojd Value of 0, delneating linear]

or polynomial interpolation for VI(P).

BTMX PRCO "n Maximum value for t/_ .

BEM.N PAROn Minimum value for t/x !

BETV PARCOM Current value of . "!

BlqHIGH FLDOOM IV (/n Upper Slimit for given R line.

BLWFLDCOM I/.)Lower (lii for given R line.

C43 ADACOM J Constant used by adaptive integration

ruins

S' 9 1 77

Name Common Symbol Significance
Blo dc

CNO CRLENS a0 Current value of so.

CNANE FNAES 5 character string defining
ftle for a(i).

CND CRT a d Inspection limiting cradc length

CO1 dLCOM pf (#)/C/I (#)I.
CONT2 FLDCOM pk(6)/y(t t)
CONTI LOGOOM Not used.

CONTON INTCON logical Inteprand maps are possible.

CX(100) CE CON a, Values of a used to define a(!).

CRK CRKFN Dspersion parameter for 1.

CR12 CRFN KInim value parameter fo 2.

CRK3 CRm1 Location parameter for 12"

CURRO TESTIN logical ADAPTO is currently active.

CURR1 TESTIN logical ADAPTI is currently active.

DGS GEMMIT logical The contour map routine, CONT,
will interpolate along nesh
diagonals.

DINCH GDMDOT Length of interval used by the
smoothing allorithm.

R(3o) ADACO g/2 j z For use In applying (4.13).
jPS ADACOM £rel Relative error criterion.

B UPS 0704 e rel Relative error criterion
(temporary storage).

EPS1 SMALI 10 "4 Convergence limit (e.g. for FSOLVE)

EPS2 SMALCO 16"7 Approx 10 x precision of
computer.

q WP INT PARCOM F*rol Relative error criterion.

3222SO INFORO Absolute error estimate made by
ADAPTO.

I121 IN1OR1 Absolute error estimate made by
ADAPTI1

" R23 IN7O12 Absolute error estimate made by
ADAIT2

ERRINO 0NFORO Integration (by ADAPTO) of error
estimates made by ADAPTI.

32211 INFOR1 Integration (by ADAPTI) or error
estimates made by ADAPT2.

FCHR BATCH First character transmitted in
a prompt message.

I FINTGO TESTIN 5 character string identifying
the integrand for ADAPTO

FIMTG1 TMSIN 5 character string Identifying
the integrand for ADAPT%.

,A m _ _ m ___memmma m 1mllm I Elm

I
Name Common Symbol Significance

Blo dc

FULSV LOGOCOM logical P (t) calculated by evaluating
iftegral expression for PI(t).

GCOM Iog(G) Interpolation table used for
k iQ evaluating loss factor.

GEXP(2500) GCOM Space for temporary storage
of functions for 2-D naps.

IGSIZE GCOM 2500 Size of G and OW arrs.-

IUP PLTPMS Number of current graph.

INSLOS LOGCOM logical No replacement after inspections.

INSPTS LOGOOM logical Expressions have to account
for a previous inspection.

IMOFF INTOFF Flag: ifA1 PLTPNT will not
try to plot evaluation points.

ISWT ISVT Flag: ifsO, a loss factor table
is being contoured IfAO, an
integrand map in being contoured.

ITT RTIME Initial value of Job-tims in
milli-s conds.

JO INFOR Current level of subdivision
in ADAPTO.

Ji 1FOR1 Current level of subdivision J
in ADAPTI.

J2 INFOR2 Current level of subdivision,
In ADAPT2.

JDIFF PSIDIF Value of J corresponding toPD

KALP CFCOM Integer identifying standard

density function for ;,

KBT CFCOM Integer identifying the standard
density function for X1 I

KCRK CRKFN Integer idntifying the standard
density function for h? I

KLIM ALPCOM Kiln Number of nodes in st direction
for loss factor table.

L MFCON Number of nodes in at used for I
evaluating pffl(tno),

LEMAXO I11ORO Maximum level reached by ADAPTO.

LVIAX1 IFOR1 Maximum level reached by ADAPT1.

LZM= I7R2 Maximum level reached by ADAPT2.

LIM= LOGOON logIcal Limit ridc inspection. I
LOGPLT LOGPLT logical Current plot is made on a log

bass. (e,. log taken before
co 0 o.S erawn,.

599

Name Common Symbol Significance
Bloc

M LOADC M Number of data pairs used to

MAXJO IFODD Maximum ;llowable subdivision
level for ADAPWO.

MAXL1 1110R1 Maximum allowable subdivision
level for ADAPT1.

NAXl.32 1O22 Maximum allowable subdivision
level for ADAPT2.

N PSCO1 N Number of data pairs used to
define f(I).

NCK CBKCOI Number of data pairs used to
define a(L).

NDC DTCOH Number of data pairs used to
define Cd(a).

NIDAX DISCOM Number of time values for which
parameters have been stored for
the evaluation of strength functions

NIMAX RLIXTS Number of inspections that have
been made.

NI T INTCOM Number of nodes in #direction used
for integrand maps.ILEV GrMSNT Current contour level number.

14AhX RNVALS Number of evaluation times.

NOUT IITCON Integer identifying the outermost
integration level.

1170 ADACHO lumber of initial subdivision
nodes for ADPTO.

IPI ADACI Number of initial subdivision
nodes for ADAPTI.

1P2 ADACK2 Number of initial subdivision
nodes for ADAPT2.

ITIM ERM Number of terms evaluated by- FRFO.

NVALSO 3N020 Number of inteagrand evaluations
made by ADAPTO.

NVALSI XNFOR1 Number of integrand evaluations
made by ADAPTI.

NVALS2 X1702 Number of integand evaluations
made by ADAPT2.

NVMAD N17O Maximum number of integrand
evaluations for ADAPTO.

NVKAXI IN10R Maximum number of integrand
evaluations for ADIPTI.

N NVIAX2 IFO32 Ka inum rof egr d_ -_____

..

600.!o0

Name Common Symbol Significance
Block

PERT LOGCOM logical Periodic inspection procedure
has been selected. f

PLD PLDCON R Proof load value.

PLTIT LOOCOM logiCal Interand plots are required.
pNAMB FNAMEI 5 character string identifying I

the function file for ,(t).

POPLOS LOGCOM logical The loss factor term is
included in the analysis.

PRIT(151) RLIMTS Pd t(tl) Probability of detection at
the 'th inspection.

PS(30) PSICOM (j3) Values of If used to define
f(l). Also used to store Interpol-
ation tables.

PSIVAL PARCOM Y(O) Current value of 7(S).

PSJD PSIDI I'(rvalue corresponding to Ow~

ROW) LOADO: 2 R values used to define P (R)£ (or x2(R)). '

R12 ADACON 1/12

R3 ADACOM 1/3
RAXTL PARCOM I Average load application rate.

RDET RISC1 Pdet(ti) Probability of detection at the
last inspection.

RESTRT LOGCOM logical Restart from last run if possible.
RP RISKC rf(t) Risk of fatigue life exhaustion.

RFARG(150) RMCOM .Rn/fj Nodes used for evaluation of
-e Pffl(tlno)*

RFM PARCOM t f(Rain) Used for limit calculations for
rf(t) terms.

RYLT R1SX[CM r f(t).P t M
RISK LOGCOM logical Expression for p t) is being

evaluated. Used o select options
in FBET and FALP,

"300) LOADCK log(r2 (R)) Values of lo(r ()) and interpol-
ation tables fo; evaluating r 2 (a).

RLzV CYCOM Kazium level of subdivision to
be used by adaptive Integration
rotine~ts*

XM.MR(2) P34TS Limit risk levels. First value
determines first Inspection.
Second value, all others.

RLOADV nDCOm r2 (2) Current value of r2 (R).

RLT RZI KQ PS(t) Probability of survival.

RLTM(10) ISCOM P Probability of survival at a time
value for which strength
distributions are requirod.

: i i i i _ i ! -,t

6C'I

Name Common Symbol Significance
Block

ELTINS RISKCG Pd (ti£) Fraction of population removeddt by all previous inspections.

MAN ISKC maan(t) Mean risk.

RMUO RMUO go Median virgin strength.

RNO NVALC no Initial ase.
ROCON INTCON logical Variations in initial crack

length 72 ignored,

RNOLIN CRKFN Upper integration liit for no.
RI4 AX CXPFI nomex Default , upper limit for no.

RROXIN CMElN nO'Ed n Default lower limit for no-

RNANEC FNAMRS 5 character string identifying
function file for Pk(R).

RIC(100) CRICO Age values defining a(T).

RID NVALCK id Ago corresponding to ad.

RNDIST(10) DISCOM tl Values of t for which strength
distributions are required.

RN? NVALQ(if Fatigue age limit.

RNI NVALOI Ii Median initial age.
RMIN RISKCM t Time *of last inspection.

RXINS(151) ALIMTS ti Sequence of inspection times.
RNSOLD BISKCK t Within RSTOT,-last time for

which reliability functions
were evaluated.

! RJISV PARCOM t Current value of time.
RNSVL(151) RIVALS t k Total sequence of times for

which the reliability functions
are required.

ROLf LT RIQIC p1 (t) Density function for the time
to failure; at last time value.

RS RIXCJQ r(t) Risk of static fracure by fatigue
RSLT RIQ KI r,(t).P(t)
RSLT1B(10) DISCOK r(t).PS(t) Value of p,(t) at a time value

for which strength functions are
required,

RTI RTUM Mazimum run time, in minutes.
TOT RISKCQ r(t) Total rid rate.

RV RiXgCE rv(t) Virgin ride.
RVAL PARCOK R Current value of R,
RVALS CFYOK Maximum number of functions

evaluations for adaptive
integration routines.

SBXT(1O0) ERTCOM Values of t used to define 8(t).
3dz SMTSC Scale factor for plotting in

X direction. (units/nch)
Lm

I
Name Common Symbol Signtificance

_ _ _ Blodc _

SC! SM'TSC Scale factor for plotting in
Y direction. (unitslinch)

SFN(300) IETCO 8(;) -Values of 33(f) used to define

the inspection removal function.

SMALL SMALQ(10-1-5

TESTIO TESTIS Factor used in computing absolute
error criterion from DAPTO
integration.,.

TESTI1 TMZIN Factor used in computing absolute
error criterion from ADAPT1
integration. .

TITLE(z) TIThZ 10 characters for run title.

TXT(20) TXTCO Space for text strings used to
create prompt messages.

TXMP(7) TIT1P Additional space for text strimng.

VARNO TISTIN 5 Ciaracter string identifying
the integration variable for
ADAPTO.

VAINt TISTIN 5 character string identifying
the integration variable for

ADAPT1. I
VIRGIN LOGCOM logical Virgin risk ters included in

cal culati ons.
XO AF49AXT Lower IImit of X for plot space.

XCURG TESTIN Current value of the integration

variable for ADAPO.

XCURI TISTIN Current value of the integration I
variable for ADAPTI.

XINTO INFO71 (b-a) for ADAPTO,

ZINTI 111701 (b-a) for ADAPTI,

XL AIZAX Upper limit of X for plot space.

XL(30) ADA M 1/2 ' Used to calculate Axr by I
adaptive integration routines.

XIPO(100) ADACO Nodal values for initial sub-
division by ADAPTO.

XPI(100) ADAQCO Nodal values for Initial sub-
division by ADAPTI.

XP2(100) ADACM2 Nodal values for Initial sub-
by ADAPT2.

XVAR(3) PLTr4S Minium, maxnimum and tic ak
interval for X,

TO AFEAXY Lower liit of T for plot paoe.

, | 03 0.3
'I

I IName Commton Symbol Sigiicance
Block

YL AREAXY Upper limit of Y for plot space.

YmO(100) AD&CfO Integrand v*lue. at midpoints
of initial subdivisions for
ADAPTOo

I YMI(I00) ADACKI Integrand values at midpoints
of initial subdivisions for
LDAPTI.

!PO(100) ADACK2 Integrand values at idpoint
of intial subdivisi ones for
ADAPT2.

YPO(100) ADAQCO Integrand values at initial
subdivision boundaries for
ADAPTO.

I 1(100) ADACHI Integrand values at iLnitiLal
subdivision boundaries for
ADAPT 1.

YP2(100) ADAQC2 Subdivision values at initial
subdivision boundaries for
ADAPT2.

YVAR(3) PLTPNS Minimam, maximum and tic mark
interval for Y.

I
I

(5
I
I
I
r

I Ia liII l I

I

A-3. Alphabetical Listing of Prompts and Error Messages

The various prompts and error messages are tabulated below

in alphabetical order. The nane of the sub-program in which the

prompt is issued is listed against each prompt. I
Note that some of the prompts contain numbers or text

strings that are inserted at the time the prompt is created.

These are indicated by 'S$$t in the prompts listed below. J
i Prompt Sub-programl

ADAPTS USING SSS FOR SSS FROM SSS TO SSS INFST
ANS SSS ERR I x SSS frVALSSS INrFIN T

AQS LS ERR T SSLI ZRRI SSS NVAL ISSS, SS IIINT

CSRSSS ZLE SSIS -VALS-$S,SSSSSS I$FINT5
BETA O T OF RANGE IN GSTAR GSTAR

BTCNG ... RNSV ET E BETCNG

BOTH SEQUENCES CriDy IN MERGE MERGET

CDUTION ECTRAPOLATION X i S FINTI

CONVERGENCE FAILURE IN FSOLVEAR=SSS FSOLVE

CONVERGEC FAIL IN FSOLVRLI
ARG-SSS FSOLV2

CRACK LENGTH NOF14ALISING FACTOR IS ZERO RNONIRN

CURRENT VALUE 13 SSS
SMOOTHING INTRVA SM OOTH
DATA FILE NOT ACCEPTABLE ... 0 BEING CALCULATED SETTAB!

DOT OO0N INTFLT
DURING THE CALCULATIONi OF RISK
APE PLOTS BRQUIRZDI ADVNCE

ZXTZR AGAIN? RMLIN

ENTER POINT CO - 1,2,3,4,5 OR 6 PLTPNT 3
ENTER 5 VALUES AT A TIME - TERMINATE WITH 0 REALIN

ID

3

Prompt Sub-program

ERROR IN ADAPTS USING $$5 OVER 5
ADAPTS; 55$; 55$ 55$
ADAPTS; 558; 558 : $$ ERROUT
ERROR IN GAMMA FUNCTION, IFAIL = 55$ PDFSET

ERROR IN FDSRl ... PSI IS ZERD FDSRl
ERROR IN MERGE ... XLOW IS GREATER THAN XHIGH
fLOW a S5 hIGH = I$5 MERGE
ERROR --- N(S5S) IS LARGER THAN IMU(S$) COT
EXPI ... ARG OUT OF BOUNDS Ew1
FBET ... PSI IS ZERO FOR BETA FB$$IET

J FINDING RES CORRESPONDING To LIMIT RISK ADVNCEFUNCTION ISq ZERO EVERYWHERE .. CANNOT COPE RANGLE

i i FUNCTION LIMITS "
LEVELS? ARRPLT

SUSE LOG INTERPOLATION? ARRPLT

SG ARRAY READ FROM DISK FILE ETAB
GSTAR ... "o$, $ IS ILLEGAL GSTAR

INCLUDE R LINES? IMTPLT
INCLUDE GRID? GRID

INDICATE MAX LEVELS FOR PLOTTING
FUNCTION EVALUATION POINTS
BETA
ALPHA PLTPNT
INFORMATION ---- NS STOT,

FLPROB
INITIALISE INTEGRAND PLOTS
BETA VALUES BETWEEN 5$ AND 5$LBETAMIN, BETAKAX, BETASTEP SETPLT

ALPHA VALUES BETWEEN $85 AND $5[ALPMIN, ALPMAX, ALPSTEP SETPLT
i INSUFFICIENT DATA TO PLOT PLTOUT

IITEGRAND PLOT? INTPLT

I INTEGRAND INFORMATION PLOTTED ADVNCE
LENGTH OF X AXIS (INCIES) SETGRF

I LENGTH OF r AXIS (INCHES) SETOR?
LIST TZ2RINATEDU REALIN
LIMITS AND NUMBER OF INTERVALS REALIN
LIMIT EXCEEDD REALIN

I

Prompt Sub-Pro am

NEW VALUE FOR NTYP INTPLT j
NO TIME VALUES ADVNCE

NODAL STORAGE LIMIT OF 81$ EXCEEDED ERROUT !
NOT ENOUGH STORAGE FOR CRACG GROWTH FUNCTION CREGR
NOTHING TO PLOT PLTOUT
OUTER INTEGRAND PLOT F

ARGUMEN VALUES ARE BETWEEN $$$ AND IS$I ~~i XINA ,Ol1 X.STEP PLTOUT

OUTE INTERN PLOT PLTsE -

PBETA ... ARG IS ZERO PBZ,

PLOT G FUNCTION? SETTAB

PLOT G INTEGRAL? SETTAB

PLOT LOSS FACTOR? SETTAB

PRINT G FUNCTION? SETTABj

PRINT G INTEGRAL? SETTAB

PRINT IINTEGRAND VALUES INTPLT

PROBABILITY OF DETECTION FDEET
PROBABILIIT OF FAILURE RSKTOT

PROBABILITY OF SURVIVAL HAS REDUCED TO 0.0 RSKTOT

PROB DST OF FAILING LOAD CALCULATIONS FLPROB

PS1Z1V ... NO DATA PSIDEV i

R LIMITS BEING CHANGED SETTAB

R VALUES INTPLT j
RF TERM SRKTOT

RISK AFTuR INSPECTION GREATER THAN LIMIT RISK ADVNCE

RISK AT INSPECTION ADVNIC
RISK FOLLOWING INSPECTION ADVICE

RISK FUNCTION RSLT RSKTOT I
RUN 188 TER41NATED FnxISs
STORAGE INSUFFICIENT IN MERGE MERGE o

UBSD!VISION LIMITED X - 15$ LEVIL $ SROUT
TF 1 BEING CHANGED SETTAlE

TI IS BEING CHANGED SETTAR

TIME LIMIT EXCEEIED EXTIME I "

IPrompt u-rga

USING MYP - S51 IZITEGRAND MAT!RIX IS $$I BY ISS

fVIRGIN SURVIWBSHP TERMNIV
00 WARNING *F(HIQH) mSI, RANGEI*WARNING *F(LOW)m $S RN0

IF THE RNSVAL INTER"VALS ARE LARGEIFULL SURVINORSHIP SHOULD BE USED ADVNC8
**WARNING 0* ERPOR GREATER THAN REqUESTED xnwfIN
**WARNING ** TOTAL ERRR GREA ER THAN REQUESTD INPIMT

MAX (SII) UEZAT THAN LARGEST NODE ERROUT

DMIl (sII) LEWS THAN SMALLST Home ERROUT

5 VALUES ACCEPTED REALIN
IS$ ERROR (S$$) GREATER THAN REQUESTED (II)ERROUT

IIFUNCTIOii VALUES EXCEEDED ERROUT

6o3

A.4. Program Assembly I
The source code for NW, NWP]2E and IMDPLT in written

in IDRTRAN IV as implemented on the DEC System-10 at ARL. 1

The code for NIB? resides in five files; 1

MCFPo.J0B
NEMP1 .FOR

R1P2.701

13214. ORtI
which contain the subroutines in hierarchcal order, with

the highest level subroutines in NZR1PO.FOR. If these files 3
are compiled and searched in the above order they form a

library of subroutines which can be loaded into any program 1
making use of any combination of the NR subroutines without

the necessity for multiple passes through the library.

The only routine required by M? that is not in

the above files or part of the stardard libraries installed on

the DEC System-1O (which include the plot subroutines) is the

function that evaluated the Slmma function required by PDFSET.

The NAG library must be searched to obtain this function.

The progrom MW . can be assembled by loading the compiled3

versions of the above files in numerical order and then searching

the NAG library, 1

The program lRP residulin the file I WRnFOR which

'I.n

I

contains the subroutines and functions described in Section 5. 11.

The program in assembled by loading the compiled version

of this file and then searching the main NhF library to

complete the assembly.

.he program NELT resides in a file called NZEPLT.POR

I and is loaded in the same way as XEUPRS.

, 1J
I

I

It

I
I-
I-

'

'I
!

DISTRIBUTIONI
AUSTRALIA

Department of Defence

Central Office

* Chief Defence Scientist
Deputy Chief Defence Scientist (I copy)
Superintendent, Science and Technology Programmi s

Controller, Projects and Analytical Studies
Defence Science Representative (U.K.) (Doc Data sheet only)
Counsellor, Defence Science (U.S.A.) (Doc Data sheet only)f * Defence Central Library

* Document Exchange Centre, D.I.S.B. (17 copies)
Joint Intelligence Organisation
Librarian H Block, Victoria Barracks, Melbourne
Director General - Army Development (NSO) (4 copies)
Defence Industry and Materiel Policy, FAS

Aeronautical Research Laboratories

*Director

I * Library
Superintendent - Structures
Divisional File - Structures

* Authors: G.D. allinson
A.D. Graham

Materials Research Laboratories

Director/Library

Defence Research Centre

Library

f RAN Research Laboratory

Library

1" Navy Office

Navy Scientific Adviser

RAN Aircraft Maintenance and Flight Trials UnitDirectorate Of Naval Aircraft Engineering

Army Scientific Adviser
Engineering Development Establishment, Library

I Royal Military College Library

/coutd.

i II I

i DISTRIBUTION (CONTD

1Air Force Office

Air Force Scientific Adviser
Aircraft Research and Development Unit

Scientific Flight Group
Library
Technical Division Library
Director General Aircraft Engineering Air Force
RAAF Academy, Point Cook

Departmeit of Defence Support

Government Aircraft Factories

Manager
Library

I Department of Science and Technology

Bureau of Meteorology, Library

Department of Aviation

Library
Flying Operations and Airworthiness Division

Statutory And State Authorities And Industry

Australian Atomic Energy Commission, Director
CSIROj Materials Science Division, Library
Trans-Australia Airlines, Library
Qantas Airways Limited
SEC of Vic., Herman Research Laboratory, Library
Ansett Airlines of Australia, Library
B. H.P., Melbourne Research LaboratoriesI Commonwealth Aircraft Corporation, Library

Hawker do Havilland Aust. Pty Ltd, Bankstown, Library
Rolls Royce of Australia Pty Ltd., Mr C.O.A. Bailey

" Universities and College*

Adelaide Barr Smith Library

Flinders Library

Latrobe Library

j Melbourne Engineering Library

Nonash *Hargave Library

I Newcastle Library

New England Library

I •ond

i •o

DISTRIBUTION (CONTD.)

Universities and Colleges (contd.)

Sydney Engineering Library

N.S.W. Physical Sciences Library
Assoc. Professor R.W. Traill-Nash, Civil Engineering

Queensland Library

Tasmania Engineering Library

Western Australia Library

R.M.I.T. * Library
* Dr A.O. Payne

CANADA

CAARC Coordinator Structures
International Civil Aviation Organization, Library
NRC

Aeronautical & Mechanical Engineering Library
Division of Mechanical Engineering, Director

Universities and Collages

Toronto Institute for Aerospace Studies

FRANCE

ONERA, Library

Fachinformationsaentrum: Energie, Physic, Mathematik GMIH

INDIA

CAARE Coordinator Structures
Defence Ministry, Aero Development Establishment, Library
Hindustan Aeronautics Ltd, Library
National Aeronautical Laboratory, Information Centre

INTERNATIONAL COMMITTEE ON AERONAUTICAL FATIGUE

Per Australian ICAF Representative (25 copies)

ISRAEL

Technion-Imrael Institute of Technology
Professor J. Singer

IITALY
Professor Ins. Guiseppe Gabriolli

... /onatd.

I DISTRIBUTION (CONTD.)

JAPAN

National Research Institute for Metals, Fatigue Testing Divisionj Institute of Space and Astronautical Science, Library

Universities

I Kagawa University Professor H. Ishikawa

NETHERLANDS

National Aerospace Laboratory ENLRI, Library

Defence Scientific Establishment, Library
Transport Ministry, Airworthiness Branch, Library
RNZAF, Vice Consul (Defence Liaison)

Universities

Canterbury Library
Professor D. Stevenson, Mechanical EngineeringI Mr J. Stott, Chemical Engineering

SWEDEN

Aeronautical Research Institute, Library

Swedish National Defense Research Institute (TM)

i SWITZERLAND

F+W (Swiss Federal Aircraft Factory)

UNITED KiN~om

Ministry of Defence, Research, Mterials and Collaboration
CAARC, Secretary (NFL)
Royal Aircraft 2stablishment

Bedford, Library
Farnborough, Dr G. Wood, Materials Deprtimnt

Commonwealth Air Transport CowmI Secretariat
National Enineering Laboratory, Library

I British Library, tend Division
CAARC Co-ordinator, Structures
Aircraft Research Association, Library
Fulmr Research Institute Ltd, Research Director

r motor Infustry Research association, Director
Rolls-Royce Ltd

AsxIo Division BristltO, LUNirary

British Aerospace
rKinon-pon TheiN, Library
Eatfiold-Chesta Division, Lilrary

British Novroraft CorporatioLti, Liary?

... /ADORN.

I
I DISTRIBUTION (CONTD.)

J UNITED KINGDOM (CONTD.)

Universities and Colleges

Bristol Engineering Library

Cambridge Library, Engineering Department
Whittle Library

London Professor G.J. Hancock, Aero Engineering

Manchester Professor, Applied Mathematics

i Nottingham Science Library

Southampton Library(Liverpool Fluid Mechanics Division, Dr J.C. Gibbings

Strathclyde Library

Cranfield Inst. of Library
Technology

Imperial College Aeronautics Library

UNITED STATES OF AMERICA

NASA Scientific and Technical Information Facility
Applied Mechanics Reviews
The John Crerar Library
Boeing Co.,

Mr R. Watson
Mr J.C. McMillan

United Technologies Corporation, Library
Lockheed-California Company
Lockheed Georgia
McDonnell Aircraft Company, Library

Universities and Colleges

Florida Aero Engineering Department

Johns Hopkins Professor S. Corrsin, Engineering
Iowa State Dr G.K. Serovy, Mechanical Engineering
Iowa Professor R.I. Stephens
Illinois Professor D.C. Drucker

Princeton Professor G.L. Mellor, Mechanics

Massachusetts Inst. of M.I.T. LibrariesTechnology

I SPAMKS (22 copies) (8 hard copies, 14 fiche copies)
TOTAL (22 hard copies, 168 fiche)

* Hard copies.

rb
ti ' pm

11

Deartment et oinence

I DOCUMENT CONTROL DATA

1.s. AR No l ldunmtt o 2. Document Dm 3. Took No
AR-002-984 IRaL-STRUC-REIPORT-397 Septeber 1983 DST 82/011

ry" -S. Security 6. No paw.
NEMF - A COMPTER PROGRAM FOR TIE NMQW- &. d cument 609J CAL .VALmU ZO, 01..ILIIL T,_F 6-NCTONS - .tlcS n1E i-- b. title C. 913r, at 7. No Raft
RELIBILITY ODELLING, NMZERICAL METRODS
AND PROGRAM DOCUMENTATION. U U 22

'S. Authcrisl .~tanelw~ia
G.D. MALLINSO

. omraig f

A.D. GRAHAM

10. CaeeeAuth.' - Addre jW Audhoity Iepe Wne

Aeronauticar Research Laboratories,
P.O. Box 4331, MELBOURNE, VIC. 3001

Approved for Public Release.

1O'rwmeew.quine cu.ta k*sti e to Ube .rod tlmugh ASOIS. Dumm Infontetseo ienem Se tl .
OmenWeA of Defense. Cwng U Park, CANBERRA ACT 2601
13. . 11vic documeno my be AmNOUNCSO in aft e nd Se"nm svwee "UbMhe to _

t No limitations .

13. b. Cheeion for oe urmpoe ie ass m waoemm'tJ may be (eec) unrvcledfor m for 13 a.
14. DOmaers 1. COSATI Grow
Reliability Fatigue models
Mathematical models 1113
Fatigue tests 0902
Failure
Probability density functions
Risk analysis

The cc02uter program W (umarical Evaluation of Reliability
Functions) has been designed to evaluate the reliability functions
that result fo the application of reliability analysis to the
fatigue of aircraft structures, in particular those reliability

i f imatios derived by Payne and his co-workerS at the Aeronautical3I Itesearch Laboratories. The WERF Program, although based on the Payne
reliability models, is capable of extension to more coalex models*1 .a~the need arises.

This doctment details the ma vical devellemnt of the
MliabilitY fnctions evaluated by MW and descrihaes the computer1 =ogam i In sufficient detail to allow fesired modifications.' i I

I
This pegs is to be "d to r lo ileonf ot wlld is eul"ad by the Emablahae for im ou"s bt
which will not be added to de DISTIS dan bem wnls spauflamly equmed. I

16. Abot (emiM I

I

Aeronautical Research Laboratories, Melbourne

is1. oomm swim SOW I*O#W 01. = Ceft 20. TV44of Rep Wdt PS AW mm

STRUCTURES RIMOR1 397 27 7030

21. Cauova Prem. Uns d

NEF (FORTRAN)

NERPLT (FORTRAN)
NREL (FORTRAN)

I
I

' I
I*
I

* UE

